精英家教网 > 初中数学 > 题目详情
如图,当x=2时,抛物线取得最小值-1,并且与y轴交于点C(0,3),与x轴交于点A、B(A在B的右边)。

(1)求抛物线的解析式;
(2)D是线段AC的中点,E为线段AC上的一动点(不与A,C重合),过点E作y轴的平行线EF与抛物线交于点F。问:是否存在△DEF与△AOC相似?若存在,求出点E的坐标;若不存在,请说明理由;
(3)在抛物线的对称轴上是否存在点P,使得△APD为等腰三角形?若存在,请直接写出点p的坐标;若不存在,请说明理由。
(1);(2);(3)

试题分析:(1)已知,当x=2时,抛物线的最小值为-1,因此抛物线的顶点坐标为(2,-1);可用顶点式来设抛物线的解析式,然后将C的坐标代入即可求出抛物线的解析式.
(2)由于EF∥OC,那么∠FED=45°,因此要使三角形EFD与三角形COA相似,只有两种情况:当D为直角顶点时,∠EDF=90°,由于D是AC中点,而FD⊥AC,三角形AOC又是个等腰直角三角形,因此DF正好在∠COA的平分线上,即DF在直线y=x上,此时可先求出直线AC的函数关系式,然后联立抛物线的解析式求出F的坐标,由于E、F的横坐标相同,将F的横坐标代入AC所在的直线的解析式中即可求出E点的坐标.
(3)当F为直角顶点时,∠EFD=90°,那么DF与三角形AOC的中位线在同一直线上,即DF所在的直线的解析式为y=2,然后可根据(2)的方法求出p点的坐标.
(1)由题意可设抛物线的关系式为
y=a(x-2)2-1
因为点C(0,3)在抛物线上
所以3=a(0-2)2-1,即a=1
所以,抛物线的关系式为
(2)令y=0,即x2-4x+3=0,
得点A(3,0),B(1,0),线段AC的中点为D(
直线AC的函数关系式为y=-x+3
因为△OAC是等腰直角三角形,
所以,要使△DEF与△AOC相似,△DEF也必须是等腰直角三角形.
由于EF∥OC,因此∠DEF=45°,
所以,在△DEF中只可能以点D、F为直角顶点.
当F为直角顶点时,DF⊥EF,此时△DEF∽△ACO,DF所在直线为y=


当D为直角顶点时,DF⊥AC,此时△DEF∽△OAC,由于点D为线段AC的中点,
因此,DF所在直线过原点O,其关系式为y=x.


当∠DFE=90°时,E1,当∠EDF=90°时,E2
(3)

点评:解题的关键是要注意的是(3)中在不确定△EDF的直角顶点的情况下要分类进行讨论,不要漏解.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,直角梯形OABC中,AB∥OC,O为坐标原点,点A在y轴正半轴上,点C在x轴正半轴上,点B坐标为(2,),∠BCO=60°,OH⊥BC于点H.动点P从点H出发,沿线段HO向点O运动,动点Q从点O出发,沿线段OA向点A运动,两点同时出发,速度都为每秒1个单位长度.设点P运动的时间为t秒.

(1)求OH的长;
(2)若△OPQ的面积为S(平方单位).求S与t之间的函数关系式.并求t为何值时,△OPQ的面积最大,最大值是多少;
(3)设PQ与OB交于点M.①当△OPM为等腰三角形时,求(2)中S的值. ②探究线段OM长度的最大值是多少,直接写出结论.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直线y= -x+3与x轴,y轴分别相交于点B、C,经过B、C两点的抛物线与x轴的另一交点为A,顶点为P,且对称轴为直线x=2.

(1)求A点的坐标;
(2)求该抛物线的函数表达式;
(3)连结AC.请问在x轴上是否存在点Q,使得以点P、B、Q为顶点的三角形与△ABC 相似,若存在,请求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中,二次函数y=mx2+(m﹣3)x﹣3(m>0)的图象与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.

(1)求点A的坐标;
(2)当∠ABC=45°时,求m的值;
(3)已知一次函数y=kx+b,点P(n,0)是x轴上的一个动点,在(2)的条件下,过点P垂直于x轴的直线交这个一次函数的图象于点M,交二次函数y=mx2+(m﹣3)x﹣3(m>0)的图象于N.若只有当﹣2<n<2时,点M位于点N的上方,求这个一次函数的解析式.==

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线C1:y=ax2+bx+1的顶点坐标为D(1,0),
(1)求抛物线C1的解析式;
(2)如图1,将抛物线C1向右平移1个单位,向下平移1个单位得到抛物线C2,直线y=x+c,经过点D交y轴于点A,交抛物线C2于点B,抛物线C2的顶点为P,求△DBP的面积;
(3)如图2,连接AP,过点B作BC⊥AP于C,设点Q为抛物线上点P至点B之间的一动点,连接PQ并延长交BC于点E,连接BQ并延长交AC于点F,试证明:FC·(AC+EC)为定值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知抛物线与x轴两交点分别是(-1,0),(3,0)另有一点(0,-3)也在图象上,则该抛物线的关系式________________ .

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

在边长为6的正方形中间挖去一个边长为x)的小正方形,如果设剩余部分的面积为y,那么y关于x的函数解析式为      

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

阅读下列材料:
我们知道,一次函数ykxb的图象是一条直线,而ykxb经过恒等变形可化为直线的另一种表达形式:AxBxC=0(ABC是常数,且AB不同时为0).如图1,点Pmn)到直线lAxBxC=0的距离(d)计算公式是:d 

例:求点P(1,2)到直线y x的距离d时,先将y x化为5x-12y-2=0,再由上述距离公式求得d  
解答下列问题:
如图2,已知直线y=-x-4与x轴交于点A,与y轴交于点B,抛物线yx2-4x+5上的一点M(3,2).

(1)求点M到直线AB的距离.
(2)抛物线上是否存在点P,使得△PAB的面积最小?若存在,求出点P的坐标及△PAB面积的最小值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

三个全等的直角梯形①、②、③在平面直角坐标系中的位置如图所示,抛物线经过梯形的顶点A、B、C、D,已知梯形的两条底边长分别为4,6,该抛物线解析式为________________

查看答案和解析>>

同步练习册答案