精英家教网 > 初中数学 > 题目详情
已知:关于x的方程(a+2)x2-2ax+a=0有两个不相等的实数根x1和x2,并且抛物线y=x2-(2a+1)x+2a-5与x轴的两个交点分别位于点(2,0)的两旁.
(1)求实数a的取值范围;
(2)当|x1|+|x2|=时,求a的值.
【答案】分析:(1)由一元二次方程的二次项系数不为0和根的判别式求出a的取值范围.设抛物线y=x2-(2a+1)x+2a-5与x轴的两个交点的坐标分别为(α,0)、(β,0),且α<β,∴α、β是关于x的方程x2-(2a+1)x+2a-5=0的两个不相等的实数根,再利用方程x2-(2a+1)x+2a-5=0的根的判别式求a的取值范围,又∵抛物线y=x2-(2a+1)x+2a-5与x轴的两个交点分别位于点(2,0)的两旁,利用根与系数的关系确定;
(2)把代数式变形后,利用根与系数的关系求出a的值.
解答:解:(1)∵关于x的方程(a+2)x2-2ax+a=0有两个不相等的实数根

解得:a<0,且a≠-2   ①
设抛物线y=x2-(2a+1)x+2a-5与x轴的两个交点的坐标分别为(α,0)、(β,0),且α<β
∴α、β是关于x的方程x2-(2a+1)x+2a-5=0的两个不相等的实数根
∵△=[-(2a+1)]2-4×1×(2a-5)=(2a-1)2+21>0
∴a为任意实数②
由根与系数关系得:α+β=2a+1,αβ=2a-5
∵抛物线y=x2-(2a+1)x+2a-5与x轴的两个交点分别位于点(2,0)的两旁
∴α<2,β>2
∴(α-2)(β-2)<0
∴αβ-2(α+β)+4<0
∴2a-5-2(2a+1)+4<0
解得:a>-
由①、②、③得a的取值范围是-<a<0;

(2)∵x1和x2是关于x的方程(a+2)x2-2ax+a=0的两个不相等的实数根
∴x1+x2=,x1x2=
∵-<a<0,∴a+2>0
∴x1x2=<0不妨设x1>0,x2<0
∴|x1|+|x2|=x1-x2=2
∴x12-2x1x2+x22=8,即(x1+x22-4x1x2=8
∴(2-=8
解这个方程,得:a1=-4,a2=-1(16分)
经检验,a1=-4,a2=-1都是方程(2-=8的根
∵a=-4<-,舍去
∴a=-1为所求.
点评:本题综合性强,考查了一元二次方程中的根与系数的关系和根的判别式的综合利用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:关于x的方程mx2-3(m-1)x+2m-3=0.
(1)求证:m取任何实数量,方程总有实数根;
(2)若二次函数y1=mx2-3(m-1)x+2m-3的图象关于y轴对称;
①求二次函数y1的解析式;
②已知一次函数y2=2x-2,证明:在实数范围内,对于x的同一个值,这两个函数所对应的函数值y1≥y2均成立;
(3)在(2)条件下,若二次函数y3=ax2+bx+c的图象经过点(-5,0),且在实数范围内,对于x的同一个值,这三个函数所对应的函数值y1≥y3≥y2均成立,求二次函数y3=ax2+bx+c的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

17、已知:关于x的方程x2+2x=3-4k有两个不相等的实数根(其中k为实数)
(1)则k的取值范围是
k<1

(2)若k为非负整数,则此时方程的根是
-3或1

查看答案和解析>>

科目:初中数学 来源: 题型:

3、已知:关于x的方程x2-kx-2=0.
(1)求证:方程有两个不相等的实数根;
(2)设方程的两根为x1,x2,如果2(x1+x2)>x1x2,求k的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:关于x的方程ax2-(1-3a)x+2a-1=0,求证:a取任何实数时,方程ax2-(1-3a)x+2a-1=0总有实数根.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:关于x的方程x2+kx-12=0,求证:方程有两个不相等的实数根.

查看答案和解析>>

同步练习册答案