【题目】如图,正方形纸片的边长为5,E是边
的中点,连接
.沿
折叠该纸片,使点B落在F点.则
的长为______________________.
【答案】
【解析】
根据折叠的性质结合三角形外角的性质可证得AE∥FC,利用勾股定理求得的长,根据Rt△EBG∽Rt△EAB,即可求得
的长,根据三角形中位线的性质即可求解.
根据折叠的性质,△ABE△BFE,AE垂直平分BF,且E是边BC的中点,
∴BE=EF=EC,∠BEA=∠FEA,
∴∠EFC=∠ECF,
∵∠BEF =∠BEA+∠FEA=∠EFC+∠ECF,
∴∠BEA=∠ECF,
∴AE∥FC,
∵四边形是边长为5的正方形,且E是边BC的中点,
∴∠ABC=90,AB=5,BE=
,
∴,
连接BF交AE于点G,如图:
∵AE垂直平分BF,
∴∠BGE=90,
∴Rt△EBG∽Rt△EAB,
∴,即
,
∴,
∵GE∥FC,E是边BC的中点,
∴CF=2GE=,
故答案为:.
科目:初中数学 来源: 题型:
【题目】在“前线医护人员”和全国人民的共同努力下,疫情得到了有效控制,宁波各大企业复工复产有序进行.为了实现员工“一站式”返岗,宁波某企业打算租赁5辆客车前往宁波东站接员工返岗.已知现有A、B两种客车,A型客车的载客量为45人/辆,每辆租金为400元;B型客车的载客量为30人/辆,每辆租金为280元.设租用A型客车为x辆,所需费用为y元.
(1)求y关于x的函数解析式;
(2)若该企业需要接的员工有205人,请求出租车费用最小值,并写出对应的租车方案.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数图象的顶点坐标为(3,8),该二次函数图像的对称轴与
轴的交点为A,M是这个二次函数图像上的点,
是原点
(1)不等式是否成立?请说明理由;
(2)设是△AMO的面积,求满足
的所有点M的坐标.
(3)将(2)中符号条件的点M联结起来构成怎样的特殊图形?写出两条这个特殊图形的性质.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知是
的高,
直角
的顶点
是射线
上一动点,
交直线
于点
所在直线交直线
于点F.
(1)判断△ABC的形状,并说明理由;
(2)若G为AE的中点,求tan∠EAF的值;
(3)在点E的运动过程中,若,求
的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校为了解本校初中学生在学校号召的“积极公益”活动中周末参加公益的时间(单位:h),随机调查了该校的部分初中学生.根据调查结果,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:
(1)本次接受调查的初中学生人数为________,图①中m的值为________;
(2)求统计的这部分学生参加公益的时间数据的平均数、众数和中位数;
(3)根据统计的这部分学生周末参加公益时间的样本数据,若该校共有650名初中学生,估计该校在这个周末参加公益时间大于1h的学生人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线,与x轴交于两点A,B(点A在点B的左侧),与y轴交于点C.
(Ⅰ)求点A,B和点C的坐标;
(Ⅱ)已知P是线段上的一个动点.
①若轴,交抛物线于点Q,当
取最大值时,求点P的坐标;
②求的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线与
轴交于点
,与
轴交于点
,直线
与反比例函数
在第一象限的图象交于点
、点
,其中点
的坐标为(1,n)
(1)求反比例函数解析式;
(2) 连接, 求
的面积;
(3)根据图象,直接写出当时不等式
的解集
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图(1),已知抛物线与x轴交于A、B两点,与y轴负方向交于C点,且
.
(1)试求出抛物线的解析式;
(2)E为直线上.动点,F为抛物线对称轴上一点,当F点在对称轴上何处时,四边形ACFE的周长最短,并求出此时四边形的周长;
(3)如图(2),为x轴上一点,抛物线上x轴的上方是否存在点P,使得线段AP与直线CD相交且它们的夹角为45°,若存在这样的P点,请求出P点坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,∠A=30°,∠ACB=90°,BC=2,D是AB上的动点,将线段CD绕点C逆时针旋转90°,得到线段CE,连接BE,则BE的最小值是( )
A.-1B.
C.
D.2
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com