【题目】如图1是流花河的水文资料(单位:米),取河流的警戒水位作为0点,那么图中的其他数据可以分别记作什么?如表是小明记录的今年雨季流花河一周内水位变化情况(上周末的水位达到警戒水位)
星期 水位 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
水位变化/米 | +0.2 | +0.8 | -0.4 | +0.1 | +0.3 | -0.4 | -0.1 |
实际水位/米 | 33.6 |
注:正表示水位比前一天上升,负表示水位比前一天下降.
(1)本周星期______河流的水位最高,水位在警戒水位之______(上或下);星期______河流的水位最低,水位在警戒水位之______(上或下);
(2)与上周相比,本周末河流水位是______(上升了或下降了);
(3)完成上面的实际水位记录;
(4)以警戒水位为0点,用折线统计图(如图2)表示本周的水位情况.
【答案】(1)二、五,上,一,上;(2)上升了;(3)见解析;(4)见解析.
【解析】
(1)确定本周每一天的水位,相互比较以及和警戒水位比较,即可得到答案;
(2)根据有理数的大小比较,可得答案;
(3)根据有理数的加法,可得答案;
(4)根据描点、连线,可得折线统计图.
解:(1)确定本周每一天的水位后,发现本周星期二、五河流的水位为34.4,水位最高;水位大于警戒线33.4,故在警戒水位之上;星期一河流的最低水位33.6,水位大于警戒线33.4,水位在警戒水位之上;
(2)由于上周水位未达到警戒线,即33.4;本周日水位33.9,故本周末河流水位是上升了;
(3)完成上面的实际水位记录:
星期 水位 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
水位变化/米 | +0.2 | +0.8 | -0.4 | +0.1 | +0.3 | -0.4 | -0.1 |
实际水位/米 | 33.6 | 34.4 | 34 | 34.1 | 34.4 | 34 | 33.9 |
(4)如图2
科目:初中数学 来源: 题型:
【题目】我乡某校举行全体学生“定点投篮”比赛,每位学生投40个,随机抽取了部分学生的投篮结果,并绘制成如下统计图表。
组别 | 投进个数 | 人数 |
A | 10 | |
B | 15 | |
C | 30 | |
D | m | |
E | n |
根据以上信息完成下列问题。
①本次抽取的学生人数为多少?
②统计表中的m=__________;
③扇形统计图中E组所占的百分比;
④补全频数分布直方图;
⑤扇形统计图中“C组”所对应的圆心角的度数;
⑥本次比赛中投篮个数的中位数落在哪一组;
⑦已知该校共有900名学生,如投进个数少于24个定为不合格,请你估计该校本次投篮比赛不合格的学生人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】图1所示矩形ABCD中,BC=x,CD=y,y与x满足的反比例函数关系如图2所示,等腰直角三角形AEF的斜边EF过C点,M为EF的中点,则下列结论正确的是
A. 当x=3时,EC<EM B. 当y=9时,EC>EM
C. 当x增大时,EC·CF的值增大。 D. 当y增大时,BE·DF的值不变。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】先化简÷(-),然后再从-2<x≤2的范围内选取一个合适的x的整数值代入求值
【答案】4.
【解析】试题分析:先将原分式进行化解,化解过程中注意不为0的量,根据不为0的量结合x的取值范围得出合适的x的值,将其代入化简后的代数式中即可得出结论.
试题解析:原式===.
其中,即x≠﹣1、0、1.
又∵﹣2<x≤2且x为整数,∴x=2.
将x=2代入中得: ==4.
考点:分式的化简求值.
【题型】解答题
【结束】
21
【题目】解方程:
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线与轴交于点,与轴交于点,其顶点在直线上.
(1)求的值;
(2)求两点的坐标;
(3)以为一组邻边作,则点关于轴的对称点是否在该抛物线上?
请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在数轴上,点A表示1,现将点A沿数轴做如下移动:第一次将点A向左移动3个单位长度到达点A1,第2次将点A1向右平移6个单位长度到达点A2,第3次将点A2向左移动9个单位长度到达点A3…则第6次移动到点A6时,点A6在数轴上对应的实数是_____;按照这种规律移动下去,第2017次移动到点A2017时,A2017在数轴上对应的实数是__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“校园安全”受到全社会的广泛关注,某校对部分学生及家长就校园安全知识的了解程度,进行了随机抽样调查,并绘制成如图所示的两幅统计图不完整根据统计图中的信息,若全校有2050名学生,请你估计对“校园安全”知识达到“非常了解”和“基本了解”的学生人数为
A.1330B.1350C.1682D.1850
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等边△ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP=CQ.
(1)求证:△ABP≌△ACQ.
(2)判断△APQ的形状,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:对角线互相垂直的凸四边形叫做“垂直四边形”.
(1)理解:
如图1,已知四边形ABCD是“垂直四边形”,对角线AC,BD交于点O,AC=8,BD=7,求四边形ABCD的面积.
(2)探究:
小明对 “垂直四边形”ABCD(如图1)进行了深入探究,发现其一组对边的平方和等于另一组对边的平方和.即.你认为他的发现正确吗?试说明理由.
(3)应用:
① 如图2,在△ABC中, ,AC=6,BC=8,动点P从点A出发沿AB方向以每秒5个单位的速度向点B匀速运动,同时动点Q从点C出发沿CA方向以每秒6个单位的速度向点A匀速运动,运动时间为t秒(),连结CP,BQ,PQ.当四边形BCQP是“垂直四边形”时,求t的值.
② 如图3,在△ABC中,,AB=3AC,分别以AB,AC为边向外作正方形ABDE和正方形ACFG,连结EG.请直接写出线段EG与BC之间的数量关系.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com