精英家教网 > 初中数学 > 题目详情
在平面几何中,我们可以证明:周长一定的多边形中,正多边形面积最大.使用上面的事实,解答下面的问题:现在有长度分别为2,3,4,5,6(单位:cm)的五根木棒围成一个三角形(允许连接,但不允许折断),那么在能够围成的三角形中,最大面积的为    cm2
【答案】分析:首先确定当三角形的三边分别是7,7,6时,三角形的面积最大.再根据面积公式求出高从而求出面积.
解答:解:当三角形的三边分别是7,7,6时,三角形的面积最大,
则这个三角形是等腰三角形,过顶点作底边上的高线,
根据勾股定理得到,高是2
因而面积是6
点评:正确理解题意能得到什么情况下三角形的面积最大,是解决本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

附加题:(如果你的全卷得分不足150分,则本题的得分将计入总分,但计入总分后全卷不得超过150分)
(1)解方程x(x-1)=2.
有学生给出如下解法:
∵x(x-1)=2=1×2=(-1)×(-2),
x=1
x-1=2
x=2
x-1=1
x=-1
x-1=-2
x=-2
x-1=-1

解上面第一、四方程组,无解;解第二、三方程组,得x=2或x=-1.
∴x=2或x=-1.
请问:这个解法对吗?试说明你的理由.
(2)在平面几何中,我们可以证明:周长一定的多边形中,正多边形面积最大.
使用上边的事实,解答下面的问题:
用长度分别为2,3,4,5,6(单位:cm)的五根木棒围成一个三角形(允许连接,但不允许折断),求能够围成的三角形的最大面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面几何中,我们可以证明:周长一定的多边形中,正多边形面积最大.使用上面的事实,解答下面的问题:现在有长度分别为2,3,4,5,6(单位:cm)的五根木棒围成一个三角形(允许连接,但不允许折断),那么在能够围成的三角形中,最大面积的为
 
cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

(2007•临夏州)在平面几何中,我们可以证明:周长一定的多边形中,正多边形面积最大.使用上边的事实,解答下面的问题:
用长度分别为2、3、4、5、6(单位:cm)的五根木棒围成一个三角形(允许连接,但不允许折断),求能够围成的三角形的最大面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

在平面几何中,我们可以证明:周长一定的多边形中,正多边形面积最大.使用上边的事实,解答下面的问题:
用长度分别为2、3、4、5、6(单位:cm)的五根木棒围成一个三角形(允许连接,但不允许折断),求能够围成的三角形的最大面积.

查看答案和解析>>

科目:初中数学 来源:第28章《一元二次方程》中考题集(15):28.2 解一元二次方程(解析版) 题型:解答题

附加题:(如果你的全卷得分不足150分,则本题的得分将计入总分,但计入总分后全卷不得超过150分)
(1)解方程x(x-1)=2.
有学生给出如下解法:
∵x(x-1)=2=1×2=(-1)×(-2),

解上面第一、四方程组,无解;解第二、三方程组,得x=2或x=-1.
∴x=2或x=-1.
请问:这个解法对吗?试说明你的理由.
(2)在平面几何中,我们可以证明:周长一定的多边形中,正多边形面积最大.
使用上边的事实,解答下面的问题:
用长度分别为2,3,4,5,6(单位:cm)的五根木棒围成一个三角形(允许连接,但不允许折断),求能够围成的三角形的最大面积.

查看答案和解析>>

同步练习册答案