精英家教网 > 初中数学 > 题目详情

【题目】如图所示,在△DEF中,EF10DF6DE8,以EF的中点O为圆心,作半圆与DE相切,点AB分别是半圆和边DF上的动点,连接AB,则AB的最大值与最小值的和是(  )

A.6B.2+1C.D.9

【答案】D

【解析】

先确定AB的最大值与最小值,作辅助线,构建矩形OCDB,则此时AB最小,图中FN就是AB的最大值,根据勾股定理和中位线定理可得结论.

如图,设⊙ODE相切于点C,连接OC,作于点B,交⊙O于点A

由点与圆的位置关系得:图中AB最小,最小值为;当点A在点N处,点B在点F处时,AB最大,最大值为FN

由勾股定理得:

由圆的切线的性质得:

,即圆的半径为3

AB的最小值为AB的最大值为

因此,AB的最大值与最小值的和是

故选:D

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】我市某企业承接了上海世博会的礼品盒制作业务,他们购得规格是170cm×40cm的标准板材作为原材料,每张标准板材再按照裁法一或裁法二裁下A型与B型两种板材.如图1所示,(单位:cm

1)列出方程(组),求出图甲中ab的值.

2)若将30张标准板材用裁法一裁剪,4张标准板材用裁法二裁剪,再将得到的A型与B型板材做侧面和底面,做成图2的竖式与横式两种无盖礼品盒.

①两种裁法共产生A型板材   张,B型板材   张;

②做成的竖式和横式两种无盖礼品盒总数最多是多少个?此时横式无盖礼品盒可以做多少个?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图(1)已知矩形AOCD在平面直角坐标系xOy中,∠CAO60°OA2B点的坐标为(20),动点M以每秒2个单位长度的速度沿ACB运动(M点不与点A、点B重合),设运动时间为t秒.

1)求经过BCD三点的抛物线解析式;

2)点P在(1)中的抛物线上,当MAC中点时,若PAM≌△PDM,求点P的坐标;

3)当点MCB上运动时,如图(2)过点MMEADMFx轴,垂足分别为EF,设矩形AEMFABC重叠部分面积为S,求St的函数关系式,并求出S的最大值;

4)如图(3)点P在(1)中的抛物线上,QCA延长线上的一点,且PQ两点均在第三象限内,QA是位于直线BP同侧的不同两点,若点Px轴的距离为dQPB的面积为2d,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AB是⊙O的直径,AD切⊙O于点A,点C的中点,则下列结论:①OCAE;②ECBC;③∠DAE=∠ABE;④ACOE,其中正确的有(  )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,将抛物线C1yx22x向左平移2个单位,向下平移3个单位得到新抛物线C2

1)求新抛物线C2的表达式;

2)如图,将△OAB沿x轴向左平移得到△OAB′,点A05)的对应点A′落在平移后的新抛物线C2上,求点B与其对应点B′的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】河南省政府为促进农业发展,加快农村建设,计划扶持兴建一批新型钢管装配式大棚,如图1所示线段ABBD分别为大棚的墙高和跨度,AC表示保温板的长,已知墙高AB3米,墙面与保温板所成的角∠BAC150°,在点D处测得A点、C点的仰角分别为9°,156°,如图2所示求保温板AC的长是多少米?(精确到0.1米)(参考数据:sin9°≈0.16cos9°≈0.99tan9°≈016sin15.6°≈0.27cos15.6°≈0.96tan15.6°≈0.281.73

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学校游戏节活动中,设计了一个有奖转盘游戏,如图,A转盘被分成三个面积相等的扇形,B转盘被分成四个面积相等的扇形,每一个扇形都标有相应的数字,先转动A转盘,记下指针所指区域内的数字,再转动B转盘,记下指针所指区域内的数字(当指针在边界线上时,重新转动转盘,直到指针指向一个区域内为止)

1)请利用画树状图或列表的方法(只选其中一种),表示出转转盘可能出现的所有结果;

2)如果将两次转转盘指针所指区域的数据相乘,乘积是无理数时获得一等奖,那么获得一等奖的概率是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,ABAC5BC6,点DE分别是边ABAC上的动点(点DE不与△ABC的顶点重合),ADBE交于点F,且∠AFE=∠ABC

1)求证:△ABD∽△BCE

2)设AExADFDy,求y关于x的函数关系式,并直接写出x的取值范围;

3)当△AEF是等腰三角形时,求DF的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,中,平分,交轴于点,点轴上一点,经过点,与轴交于点,过点,垂足为的延长线交轴于点

1)求证:的切线;

2)求的半径.

查看答案和解析>>

同步练习册答案