精英家教网 > 初中数学 > 题目详情
如图,在△ABC中,∠C=90°,∠A=30°,BC=1,将另外一个含30°角的△EDF的30°角精英家教网的顶点D放在AB边上,E、F分别在AC、BC上,当点D在AB边上移动时,DE始终与AB垂直.
(1)设AD=x,CF=y,求y与x之间的函数解析式,并写出函数自变量的取值范围;
(2)如果△CEF与△DEF相似,求AD的长.
分析:(1)由于∠EDF=30°,且DE总垂直于AB,因此∠FDB=60°,此时发现△FDB是等边三角形,那么BF=BD,可分别用x、y表示出BD、BF的长,根据上面的等量关系即可得到y、x的函数关系式;求x的取值范围时,可参照两个条件:①y≥0,②若E在AC上,那么y值最大时,E点与C点重合,可据此求出x的最大值;
(2)由于∠C是直角,当△CEF与△DEF相似时,△DEF必为直角三角形,那么可分两种情况讨论:
①∠DEF=90°,此时,△CEF∽△DEF;②∠DFE=90°,此时△CEF∽△FED;
可根据各相似三角形得到的比例线段求出y的值,进而可求得AD的值.
解答:解:(1)∵∠EDF=30°,ED⊥AB于D,
∴∠FDB=∠B=60°,∴△BDF是等边三角形;
∵BC=1,∴AB=2;
∴2-x=1-y;
∴y=x-1;(2分)
自变量的取值范围是:1≤x≤
3
2
;(3分)

(2)①如图,∠FED=90°,△CEF∽△EDF,
精英家教网
CF
EF
=
EF
DF
,即
y
2y
=
2y
1-y

解得,y=
1
5

BF=1-
1
5
=
4
5
,(4分)AD=AB-BD=2-
4
5
=
6
5
;(5分)
②如图2,∠EFD=90°,△CEF∽△FED,
精英家教网
CF
FD
=
CE
EF
,即
y
1-y
=
1
2

解得,y=
1
3

BF=1-
1
3
=
2
3
;(6分)
AD=AB-BD=2-
2
3
=
4
3
.(7分)
点评:此题主要考查了直角三角形的性质、一次函数的应用、相似三角形的判定和性质;同时还考查了分类讨论的数学思想.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在△ABC中,∠BAC=45°,现将△ABC绕点A逆时针旋转30°至△ADE的位置,使AC⊥DE,则∠B=
75
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边作垂线,画出一个新的等腰三角形,如此继续下去,直到所画出的直角三角形的斜边与△ABC的BC重叠,这时这个三角形的斜边为
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中数学 来源: 题型:

2、如图,在△ABC中,DE∥BC,那么图中与∠1相等的角是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,在△ABC中,AB=BC,边BC的垂直平分线分别交AB、BC于点E、D,若BC=10,AC=6cm,则△ACE的周长是
16
cm.

查看答案和解析>>

同步练习册答案