精英家教网 > 初中数学 > 题目详情

【题目】《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.其中第九卷《勾股》章,主要讲述了以测量问题为中心的直角三角形三边互求的关系.其中记载:今有邑,东西七里,南北九里,各中开门,出东门一十五里有木,问:出南门几何步而见木?

译文:今有一座长方形小城,东西向城墙长7里,南北向城墙长9里,各城墙正中均开一城门.走出东门15里处有棵大树,问走出南门多少步恰好能望见这棵树?(注:1里=300步)

你的计算结果是:出南门几何步而见木(

A.300B.315C.400D.415

【答案】B

【解析】

根据题意写出ABACCD的长,根据相似三角形的性质得到比例式,计算即可.

解:由题意得,AB=15里,AC=4.5里,CD=3.5里,


ACCDABACDECD

CDABACDE

∴∠DEC=ACB,∠DCE=ABC

∴△ACB∽△DEC

,即
解得,DE=1.05=315步,
∴走出南门315步恰好能望见这棵树.
故选:B

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知二次函数,当时,恒有;关于的方程的两个实数根的倒数和小于.的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】包河区发展农业经济产业,在大圩乡种植多品种的葡萄.已知某葡萄种植户李大爷的葡萄成本为10元,如果在未来40天葡萄的销售单价(元)与时间(天)之间的函数关系式为:,且葡萄的日销售量(千克)与时间(天)的关系如下表:

时间/天

1

3

6

10

20

40

日销售量/千克

118

114

108

100

80

40

(1)请直接写出之间的变化规律符合什么函数关系?并求在第15天的日销售量是多少千克?

(2)在后20天(即),请求出哪一天的日销售利润最大?日销售利润最大为多少?

(3)在实际销售的前20天中,李大爷决定每销售1千克水果就捐赠元利润()给留守贫困儿童作为助学金,前20天销售完后李大爷发现,每天扣除捐赠后的日销售利润随时间的增大而增大,请求出的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,MNC三点的坐标分别为(1),(31),(30),点A为线段MN上的一个动点,连接AC,过点AABACy轴于点B,当点AM运动到N时,点B随之运动,设点B的坐标为(0b),则b的取值范围是(  )

A.b1B.b1C.bD.b1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数图象与轴交于AB轴交于COA=2OB=1 OC=4

1.求二次函数解析式;

2.若点D为抛物线的顶点,求△BCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,A (8,0) ,B (0,6),动点M从点A出发沿AO以每秒2个单位长度的速度向原点O运动,同时动点N从点B出发沿折线BOOA向终点A运动,点Ny轴上的速度是每秒3个单位长度,在x轴上的速度是每秒4个单位长度,过点Mx轴的垂线交AB于点C,连结MNCN.设点M运动的时间为t(秒),MCN的面积为S(平方单位).

1)当t为何值时,点MN相遇?

2)求MCN的面积S(平方单位)与时间t(秒)的函数关系式;

3)当t为何值时,MCN是等腰三角形?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某电视台为了解本地区电视节目的收视情况,对部分市民开展了你最喜爱的电视节目的问卷调查(每人只填写一项),根据收集的数据绘制了两幅不完整的统计图(如图所示),根据要求回答下列问题:

(1)本次问卷调查共调查了________名观众;图②中最喜爱新闻节目的人数占调查总人数的百分比为________;

(2)补全图①中的条形统计图;

(3)现有最喜爱新闻节目(记为),“体育节目(记为),“综艺节目(记为),“科普节目(记为)的观众各一名,电视台要从四人中随机抽取两人参加联谊活动,请用列表或画树状图的方法,求出恰好抽到最喜爱两位观众的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某政府在广场上树立了如图所示的宣传牌,数学兴趣小组的同学想利用所学的知识测量宣传牌的高度AB,在D处测得点A、B的仰角分别为38°、21°,已知CD=20m,点A、B、C在一条直线上,AC⊥DC,求宣传牌的高度AB(sin21°≈0.36,cos21°≈0.93,tan21°≈0.38,sin38°≈0.62,cos38°≈0.78,tan38°≈0.79,结果精确到1米)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线为常数,)经过点,点轴正半轴上的动点.

(Ⅰ)当时,求抛物线的顶点坐标;

(Ⅱ)点在抛物线上,当时,求的值;

(Ⅲ)点在抛物线上,当的最小值为时,求的值.

查看答案和解析>>

同步练习册答案