精英家教网 > 初中数学 > 题目详情
15.如图,三个正方形围成一个直角三角形,字母C所表示的正方形面积是100,字母B所表示的正方形面积是36,则字母A所表示的正方形面积为64.

分析 利用勾股定理可得出a2的值,继而可得出字母A所表示的正方形的面积.

解答 解:由题意得,c2=100,b2=36,
从而可得a2=c2-b2=64,
即字母A所表示的正方形的面积为:64.
故答案为:64.

点评 此题考查了勾股定理的知识,解答本题的关键是根据题意得出C2,b2,要求我们熟练勾股定理的内容,难度一般.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

5.要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排28场比赛,则共有8支球队参赛.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.几何模型:
条件:如图1,A、B是直线l同旁的两个定点.
问题:在直线l上确定一点P,使PA+PB的值最小.
方法:作点A关于直线l的对称点A′,连结A′B交l于点P,则PA+PB=A′B的值最小(不必证明).
模型应用:
(1)如图2,角是大家喜爱的一种轴对称图形,它的角平分线所在的直线就是对称轴.现在有∠AOC=90°,OA=3,OB=4,P为∠AOC的角平分线上一动点,请求出AP+PB的最小值.
(2)①如图,∠AOC=30°,P是∠AOB内一点,PO=10,Q、R分别是OA、OB上的动点,请直接写出△PQR周长的最小值10.
②如图,∠AOB=20°,点M.N分别在边OA、OB上,且OM=ON=2,点P,Q分别在OB、OA上,则MP+PQ+QN的最小值是2.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.在Rt△ABC中,∠B=90°,AC边上的中线BD=5,AB=8,则 cos∠ACB=$\frac{3}{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.已知x:y=3:4,y:z=6:7,求x:y:z=9:12:14.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.若n边形的内角和为1440°,则n的值是(  )
A.8B.9C.10D.11

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.一台电脑先打九折,再打八折后售价为3600元,这台电脑的原价是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.出租车王师傅某日上午都在我市东西方向的中山路上运营.现在规定向东行驶为正,向西为负.行驶记录如下:(单位:千米)+15,-2,-5,-1,+10,-3,-2,-12,+4,-5,+6
(1)将最后一名乘客送到目的地时,王师傅在出车时的出发点的什么方向上?距离多远?
(2)若汽车耗油每千米0.05升,每升6元,这半天王师傅在耗油上用了多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.下列式子中,是一元一次方程的有(  )
A.x+5=2xB.x2-8=x2+7C.5x-3D.x-y=4

查看答案和解析>>

同步练习册答案