分析 先根据等腰三角形两底角相等求出∠C,再根据CM=CD即可求出∠CDM的度数,再根据等腰三角形三线合一的性质求出∠ADC=90°,∠ADM即可求出.
解答 解:在△ABC中,AB=AC,∠BAC=120°,
∵AB=AC,∠BAC=120°,
∴∠B=∠C=30°,
又∵CM=CD,
∴∠CDM=∠CMD=$\frac{1}{2}$×(180°-30°)=75°,
∵AB=AC,BD=CD,
∴AD⊥BC,即∠ADC=90°,
∴∠ADM=∠ADC-∠CDM=90°-75°=15°.
故答案为:15.
点评 此题考查等腰三角形的基本性质;充分利用等腰三角形三线合一的性质和等边对等角性质来求解是解题的关键.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com