精英家教网 > 初中数学 > 题目详情
(2006•鄂尔多斯)高为12米的教学楼ED前有一棵大树AB,如图(a).
(1)某一时刻测得大树AB、教学楼ED在阳光下的投影长分别是BC=2.5米,DF=7.5米,求大树AB的高度;
(2)现有皮尺和高为h米的测角仪,请你设计另一种测量大树AB高度的方案,要求:
①在图(b)中,画出你设计的测量方案示意图,并将应测量的数据标记在图上(长度用字母m,n …表示,角度用希腊字母α,β …表示);
②根据你所画出的示意图和标注的数据,求出大树的高度.(用字母表示)

【答案】分析:此题考查了学生学以致用的能力,考查了学生利用数学知识解决实际问题的能力;解此题的关键是利用相似三角形的性质,相似三角形的对应边成比例求解.解题时还要注意认识图形.
解答:解:(1)连接AC,EF,则△ABC∽△EDF,
,(2分)
∴AB=4,
即大树AB高是4米.(3分)

(2)解法一:
①如图(b)(标注m,α,画草图也可给相同的分);(5分)
②在Rt△CMA中,∵AM=CMtanα=mtanα,(6分)
∴AB=mtanα+h.(7分)
解法二:
①如图(c)(标注m,α,β,画草图也可给相同的分);(5分)
②AMcotα-AMcotβ=m,
∴AM=,(6分)
∴AB=.(7分)
点评:本题只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,通过解方程求出树的高度,体现了方程的思想.还要注意学以致用,注意知识的积累.
练习册系列答案
相关习题

科目:初中数学 来源:2006年全国中考数学试题汇编《二次函数》(10)(解析版) 题型:解答题

(2006•鄂尔多斯)如图,在△ABC中,AB=AC=5,以AB为直径的⊙P交BC于H.点A,B在x轴上,点H在y轴上,B点的坐标为(1,0).
(1)求点A,H,C的坐标;
(2)过H点作AC的垂线交AC于E,交x轴于F,求证:EF是⊙P的切线;
(3)求经过A,O两点且顶点到x轴的距离等于4的抛物线解析式.

查看答案和解析>>

科目:初中数学 来源:2006年全国中考数学试题汇编《二次函数》(10)(解析版) 题型:解答题

(2006•鄂尔多斯)如图,点P在y轴上,⊙P交x轴于A,B两点,连接BP并延长交⊙P于C,过点C的直线y=2x+b交x轴于D,且⊙P的半径为,AB=4.
(1)求点B,P,C的坐标;
(2)求证:CD是⊙P的切线;
(3)若二次函数y=-x2+(a+1)x+6的图象经过点B,求这个二次函数的解析式,并写出使二次函数值小于一次函数y=2x+b值的x的取值范围.

查看答案和解析>>

科目:初中数学 来源:2007年甘肃省甘南州合作一中高中民族班、实验班招生考试数学试卷(解析版) 题型:解答题

(2006•鄂尔多斯)如图,点P在y轴上,⊙P交x轴于A,B两点,连接BP并延长交⊙P于C,过点C的直线y=2x+b交x轴于D,且⊙P的半径为,AB=4.
(1)求点B,P,C的坐标;
(2)求证:CD是⊙P的切线;
(3)若二次函数y=-x2+(a+1)x+6的图象经过点B,求这个二次函数的解析式,并写出使二次函数值小于一次函数y=2x+b值的x的取值范围.

查看答案和解析>>

科目:初中数学 来源:2006年内蒙古鄂尔多斯市中考数学试卷(课标卷)(解析版) 题型:解答题

(2006•鄂尔多斯)如图,点P在y轴上,⊙P交x轴于A,B两点,连接BP并延长交⊙P于C,过点C的直线y=2x+b交x轴于D,且⊙P的半径为,AB=4.
(1)求点B,P,C的坐标;
(2)求证:CD是⊙P的切线;
(3)若二次函数y=-x2+(a+1)x+6的图象经过点B,求这个二次函数的解析式,并写出使二次函数值小于一次函数y=2x+b值的x的取值范围.

查看答案和解析>>

科目:初中数学 来源:2006年内蒙古鄂尔多斯市中考数学试卷(大纲卷)(解析版) 题型:解答题

(2006•鄂尔多斯)如图,在△ABC中,AB=AC=5,以AB为直径的⊙P交BC于H.点A,B在x轴上,点H在y轴上,B点的坐标为(1,0).
(1)求点A,H,C的坐标;
(2)过H点作AC的垂线交AC于E,交x轴于F,求证:EF是⊙P的切线;
(3)求经过A,O两点且顶点到x轴的距离等于4的抛物线解析式.

查看答案和解析>>

同步练习册答案