精英家教网 > 初中数学 > 题目详情
1.一个角的余角比这个角的补角的一半小30°,则这个角的大小为60度.

分析 设这个角为x,根据余角和补角的概念用x表示出这个角的余角和补角,根据题意列出方程,解方程即可.

解答 解:设这个角为x,则这个角的余角为90°-x,补角为180°-x,
由题意得,90°-x=$\frac{1}{2}$×(180°-x)-30°,
解得,x=60°,
故答案为:60.

点评 本题考查的是余角和补角的概念,如果两个角的和等于90°,这两个角互为余角;如果两个角的和等于180°,这两个角互为补角.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

11.如图,矩形ABCD中,AB=6cm,BC=8cm,动点P从点A出发,在AC上以每秒5cm的速度向点C匀速运动,同时动点Q从点D出发,在DA边上以每秒4cm的速度向点A匀速运动,运动时间为t秒(0<t<2),连接PQ.
(1)若△APQ与△ADC相似,求t的值.
(2)连结CQ,DP,若CQ⊥DP,求t的值.
(3)连结BQ,PD,请问BQ能和PD平行吗?若能,求出t的值;若不能,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.已知函数y=x2+3kx+k+1的图象的顶点在y轴上,那么函数的关系式是y=x2+1.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.如图,在?ABCD中,点E在AD边上,AE=2ED,连接EB交AC于点F,若AC=10,则AF为4.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,等边△ABC,其边长为1,D是BC中点,点E,F分别位于AB,AC边上,且∠EDF=120°.
(1)直接写出DE与DF的数量关系;
(2)若BE,DE,CF能围成一个三角形,求出这个三角形最大内角的度数;(要求:写出思路,画出图形,直接给出结果即可)
(3)思考:AE+AF的长是否为定值?如果是,请求出该值,如果不是,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.(背景)某班在一次数学实践活动中,对矩形纸片进行折叠实践操作,并将其产生的数学问题进行相关探究.
(操作)如图,在矩形ABCD中,AD=6,AB=4,点P是BC边上一点,现将△APB沿AP对折,得△APM,显然点M位置随P点位置变化而发生改变
(问题)试求下列几种情况下:点M到直线CD的距离
(1)∠APB=75°;(2)P与C重合;(3)P是BC的中点.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.有如下命题:1有理数与数轴上的点一一对应;2无理数包括正无理数,0,负无理数;3如果一个数的平方根是这个数本身,那么这个数是1或0;4一个实数的立方根不是正数就是负数.其中错误的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.如图,在△ABC中∠C=90°,AC=BC=2,O是AB的中点,以O为圆心,线段OC的长为半径画圆心角为90°的扇形OEF,弧EF经过点C,则图中阴影部分的面积为$\frac{1}{2}$π-1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,在平面直角坐标系中,抛物线y=ax2+bx+5与x轴交于A(1,0)、B(5,0)两点,点D是抛物线上横坐标为6的点.点P在这条抛物线上,且不与A、D两点重合,过点P作y轴的平行线与射线AD交于点Q,过点Q作QF垂直于y轴,点F在点Q的右侧,且QF=2,以QF、QP为邻边作矩形QPEF.设矩形QPEF的周长为d,点P的横坐标为m.
(1)求这条抛物线所对应的函数表达式.
(2)求这条抛物线的对称轴将矩形QPEF的面积分为1:2两部分时m的值.
(3)求d与m之间的函数关系式及d随m的增大而减小时d的取值范围.
(4)当矩形QPEF的对角线互相垂直时,直接写出其对称中心的横坐标.

查看答案和解析>>

同步练习册答案