A. | $\sqrt{2}$ | B. | $\sqrt{5}$-1 | C. | $\frac{\sqrt{5}}{2}$ | D. | $\sqrt{3}$ |
分析 根据点E、F的运动速度判断出DE=CF,然后利用“边角边”证明△ADE和△DCF全等,根据全等三角形对应角相等可得∠DAE=∠CDF,然后求出∠APD=90°,取AD的中点O,连接OP,根据直角三角形斜边上的中线等于斜边的一半可得点P到AD的中点的距离不变,再根据两点之间线段最短可得C、P、O三点共线时线段CP的值最小,然后根据勾股定理列式求出CO,再求解即可.
解答 解:∵动点E,F分别从D,C两点同时出发,以相同的速度在边DC,CB上移动,
∴DE=CF,
在△ADE和△DCF中,$\left\{\begin{array}{l}{AD=CD}\\{∠ADE=∠BCD=90°}\\{DE=CF}\end{array}\right.$,
∴∠DAE=∠CDF,
∵∠CDF+∠ADF=∠ADC=90°,
∴∠ADF+∠DAE=90°,
∴∠APD=90°,
取AD的中点O,连接OP,则OP=$\frac{1}{2}$AD=$\frac{1}{2}$×2=1(不变),
根据两点之间线段最短得C、P、O三点共线时线段CP的值最小,
在Rt△COD中,根据勾股定理得,CO=$\sqrt{C{D}^{2}+O{D}^{2}}$=$\sqrt{{2}^{2}+{1}^{2}}$=$\sqrt{5}$,
所以,CP=CO-OP=$\sqrt{5}$-1.
故选B.
点评 本题考查了正方形的性质,全等三角形的判定与性质,直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,确定出点P到AD的中点的距离是定值是解题的关键,也是本题的难点.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com