精英家教网 > 初中数学 > 题目详情
15.已知a是方程x2-3x-1=0的一个根,则a2+$\frac{1}{{a}^{2}}$=11,a3-10a+5=8.

分析 由把x=a代入已知方程后易得到a2-$\frac{1}{a}$-3=0,然后利用完全平方公式的变形公式来求a2+$\frac{1}{{a}^{2}}$的值;
由已知的等式变形得到a2-1=3a,a2-3a=1,把所求的式子中的-10a变形为-9a-a=-3×3a-a,将3a=a2-1代入后,去括号整理后再将a2-3a=1代入,合并后即可得到结果.

解答 解:把x=a代入x2-3x-1=0得到:a2-3a-1=0,
所以a-$\frac{1}{a}$-3=0,
所以a-$\frac{1}{a}$=3,
所以a2+$\frac{1}{{a}^{2}}$=(a-$\frac{1}{a}$)2+2=32+2=11.

由a2-3a-1=0得到,a2-3a=1,
则a3-10a+5
=a3-9a-a+5
=a3-3(a2-1)-a+5
=a3-3a2+3-a+5
=a(a2-3a)+3-a+5
=a+3-a+5
=8.
故答案是:11;8.

点评 本题考查了一元二次方程的解的定义.利用方程解的定义找到相等关系,再把所求的代数式化简后整理出所找到的相等关系的形式,再把此相等关系整体代入所求代数式,即可求出代数式的值.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

4.已知:如图,△ABC内接于⊙O,且AB=AC,点D在⊙O上,AD⊥AB于点A,AD与BC交于点E,F在DA的延长线上,且AF=AE.
(1)求证:BF与⊙O相切;
(2)若BF=10,cos∠ABC=$\frac{12}{13}$,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.二次函数y=ax2+bx+c图象的一部分如图所示,图象过点A(-3,0),对称轴为直线x=-1,给出四个结论:①b2<4ac;②2a+b=0;③a+b+c=0;④若点B(-$\frac{5}{2}$,y1)、C($\frac{1}{2}$,y2)为函数图象上得两点,则y1=y2;其中正确结论是(  )
A.①③B.②④C.②③D.③④

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,△ABC和△ADE都是等腰直角三角形,∠ACB=∠ADE=90°,AC=2,AD=1,F为BE的中点.
(1)如图1,当边AD与边AB重合时,连接DF,求证:DF⊥CF;
(2)若∠BAE=135°,如图2,求CF2的值;
(3)将△ADE绕点A旋转一周,直接写出点F运动路径的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.已知方程4x2=0和3x2-3x+a-2=0有一个相同的根,则a=2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.已知函数y=ax2+bx-1的图象经过点(3,2),对称轴为直线x=1.
(1)求这个函数的解析式;
(2)当x>0时,求使y≥2的x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,在Rt△ABC中,∠A=90°,∠C=60°,直线DE∥BC,分别交边AB,AC于点D,E,求∠1的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,A(0,2),B(1,0),点C为线段AB的中点,将线段BA绕点B按顺时针方向旋转90°得到线段BD,抛物线y=ax2+bx+c(a≠0)经过点D.
(1)如图1,若该抛物线经过原点O,且a=-$\frac{1}{3}$,求该抛物线的解析式;
(2)在(1)的条件下,点P(m,n)在抛物线上,且锐角∠POB+∠BCD<90°,求m的取值范围.
(3)如图2,若该抛物线y=ax2+bx+c(a≠0)经过点E(1,1),点Q在抛物线上,且满足∠QOB+∠BCD=90°,若符合条件的Q点的个数是4个,请直接写出a的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.已知y-2与3x-4成正比例函数关系,且当x=2时,y=3.
(1)写出y与x之间的函数解析式;
(2)若点P(a,-3)在这个函数的图象上,求a的值;
(3)若y的取值范围为-1≤y≤1,求x的取值范围.

查看答案和解析>>

同步练习册答案