精英家教网 > 初中数学 > 题目详情

【题目】如图,O为菱形ABCD对角线的交点,DE∥AC,CE∥BD.
(1)试判断四边形OCED的形状,并说明理由;
(2)若AC=6,BD=8,求线段OE的长.

【答案】
(1)解:四边形OCED是矩形.

理由如下:∵DE∥AC,CE∥BD,

∴四边形OCED是平行四边形,

∵四边形ABCD是菱形,

∴∠COD=90°,

∴四边形OCED是矩形


(2)解:在菱形ABCD中,∵AC=6,BD=8,

∴OC= AC= ×6=3,OD= BD= ×8=4,

∴CD= = =5,

在矩形OCED中,OE=CD=5


【解析】(1)先求出四边形OCED是平行四边形,再根据菱形的对角线互相垂直求出∠COD=90°,然后根据有一个角是直角的平行四边形是矩形解答;(2)根据菱形的对角线互相平分求出OC、OD,再根据勾股定理列式求出CD,然后根据矩形的对角线相等求解.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD内接于⊙O,点E在CB的延长线上,连接AC,AE,∠ACB=∠BAE=45°

(1)求证:AE是⊙O的切线;
(2)若 AB=AD,AC=2 ,tan∠ADC=3,求CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知正方形ABCD,E为平面内任意一点,连结DE,将线段DE绕点D顺时针旋转90°得到DG,连结EC,AG.

(1)当点E在正方形ABCD内部时,
①依题意补全图形;
②判断AG与CE的数量关系与位置关系并写出证明思路.
(2)当点B,D,G在一条直线时,若AD=4,DG= ,求CE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1是某公园一块草坪上的自动旋转喷水装置,这种旋转喷水装置的旋转角度为240°,它的喷灌区是一个扇形.小涛同学想了解这种装置能够喷灌的草坪面积,他测量出了相关数据,并画出了示意图.如图2,A,B两点的距离为18米,求这种装置能够喷灌的草坪面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点A的坐标为(0,4),△OAB沿x轴向右平移后得到△O′A′B′,点A的对应点A′是直线y= x上一点,则点B与其对应点B′间的距离为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标中,菱形OABC的面积为12,点B在y轴上,点C在反比例函数y= 的图象上,则k的值为(
A.3
B.﹣3
C.6
D.﹣6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知反比例函数y1= 的图象与一次函数y2=ax+b的图象交于点A(1,4)和点B(m,﹣2).
(1)求这两个函数的表达式;
(2)观察图象,直接写出y1>y2时自变量x的取值范围.
(3)连接OA、OB,求△AOB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,湿地景区岸边有三个观景台A、B、C,已知AB=1400米,AC=1000米,B点位于A点的南偏西60.7°方向,C点位于A点的南偏东66.1°方向.

(1)求△ABC的面积;
(2)景区规划在线段BC的中点D处修建一个湖心亭,并修建观景栈道AD,试求A、D间的距离.(结果精确到0.1米)
(参考数据:sin53.2°≈0.80,cos53.2°≈0.60,sin60.7°≈0.87,cos60.7°≈0.49,sin66.1°≈0.91,cos66.1°≈0.41, ≈1.414).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为⊙O的直径,弦CD⊥AB,垂足为点P,直线BF与AD的延长线交于点F,且∠AFB=∠ABC.

(1)求证:直线BF是⊙O的切线.
(2)若CD=2 ,OP=1,求线段BF的长.

查看答案和解析>>

同步练习册答案