精英家教网 > 初中数学 > 题目详情
(2008•茂名)如图,点A、B、C在⊙O上,AO∥BC,∠AOB=50°,则∠OAC的度数是    度.
【答案】分析:先求出∠ACB的度数,圆周角∠ACB等于圆心角∠AOB的一半,再根据平行,得到内错角∠OAC=∠ACB.
解答:解:∵AO∥BC,
∴∠OAC=∠ACB.
又∠AOB与∠ACB都是弧AB所对的角,
∴∠ACB=∠AOB=25°,
∴∠OAC的度数是25°.
点评:本题利用了圆周角定理和两直线平行内错角相等求解.
练习册系列答案
相关习题

科目:初中数学 来源:2008年全国中考数学试题汇编《二次函数》(07)(解析版) 题型:解答题

(2008•茂名)如图,在平面直角坐标系中,抛物线y=-x2+bx+c经过A(0,-4)、B(x1,0)、C(x2,0)三点,且x2-x1=5.
(1)求b、c的值;
(2)在抛物线上求一点D,使得四边形BDCE是以BC为对角线的菱形;
(3)在抛物线上是否存在一点P,使得四边形BPOH是以OB为对角线的菱形?若存在,求出点P的坐标,并判断这个菱形是否为正方形;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2009年河南省中招模拟试卷(解析版) 题型:解答题

(2008•茂名)如图,在平面直角坐标系中,抛物线y=-x2+bx+c经过A(0,-4)、B(x1,0)、C(x2,0)三点,且x2-x1=5.
(1)求b、c的值;
(2)在抛物线上求一点D,使得四边形BDCE是以BC为对角线的菱形;
(3)在抛物线上是否存在一点P,使得四边形BPOH是以OB为对角线的菱形?若存在,求出点P的坐标,并判断这个菱形是否为正方形;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2008年广东省茂名市中考数学试卷(解析版) 题型:解答题

(2008•茂名)如图,在平面直角坐标系中,抛物线y=-x2+bx+c经过A(0,-4)、B(x1,0)、C(x2,0)三点,且x2-x1=5.
(1)求b、c的值;
(2)在抛物线上求一点D,使得四边形BDCE是以BC为对角线的菱形;
(3)在抛物线上是否存在一点P,使得四边形BPOH是以OB为对角线的菱形?若存在,求出点P的坐标,并判断这个菱形是否为正方形;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2008年全国中考数学试题汇编《锐角三角函数》(07)(解析版) 题型:解答题

(2008•茂名)如图,某学习小组为了测量河对岸塔AB的高度,在塔底部B的正对岸点C处测得塔顶仰角∠ACB=30°.
(1)若河宽BC是60米,求塔AB的高;(精确到0.1米;参考数据:≈1.414,≈1.732)
(2)若河宽BC无法度量.则应如何测量塔AB的高度呢小明想出了另外一种方法:从点C出发,沿河岸CD的方向(点B、C、D在同一平面内,且CD⊥BC)走a米到达D处,测得∠BDC=60°,这样就可以求得塔AB的高度了.请你用这种方法求出塔AB的高.

查看答案和解析>>

同步练习册答案