精英家教网 > 初中数学 > 题目详情

【题目】如图抛物线),下列结论错误的是(

A.ab同号B.

C.时,y值相同D.时,

【答案】A

【解析】

利用抛物线开口方向得到a0,利用抛物线的对称轴得到b=-4a0,则可对AB进行判断;利用抛物线的对称性可对C进行判断;利用抛物线的对称性确定抛物线与x轴的一个交点坐标为(50),再根据二次函数的图象可对D进行判断.

解:∵抛物线开口向上,
a0
∵抛物线的对称轴为直线x=-=2
b=-4a0,所以A错误,
b+4a=0,所以B正确;
∵抛物线的对称轴为直线x=2
∴当x=1x=3时,函数值相等,所以C正确;
∵抛物线与x轴的一个交点坐标为(-10),
而抛物线的对称轴为直线x=2
∴抛物线与x轴的一个交点坐标为(50),
∴当-1x5时,y0,所以D正确.

故选A.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图显示了用计算机模拟随机投掷一枚图钉的某次实验的结果.

下面有三个推断:

①当投掷次数是500时,计算机记录钉尖向上的次数是308,所以钉尖向上的概率是0.616;

②随着实验次数的增加,钉尖向上的频率总在0.618附近摆动,显示出一定的稳定性,可以估计钉尖向上的概率是0.618;

③若再次用计算机模拟实验,则当投掷次数为1000时,钉尖向上的概率一定是0.620.

其中合理的是(

A. B. C. ①② D. ①③

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场购进一批单价为16元的日用品.若按每件23元的价格销售,每月能卖出270件;若按每件28元的价格销售,每月能卖出120件;若规定售价不得低于23元,假定每月销售件数y()与价格x(元/件)之间满足一次函数.

1)试求yx之间的函数关系式.

2)在商品不积压且不考虑其他因素的条件下,销售价格定为多少时,才能使每月的毛利润w最大?每月的最大毛利润为多少?

3)若要使某月的毛利润为1800元,售价应定为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在同一直角坐标系中,函数ymxm和函数ymx22x2 (m是常数,且m≠0)的图象可能是(

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,∠C90°,点OAC上,以OA为半径的⊙OAB于点DBD的垂直平分线交BC于点E,交BD于点F,连接DE

1)判断直线DE与⊙O的位置关系,并说明理由;

2)若∠B30°AC6OA2,直接写出阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,中,,将A顺时针旋转60°

1)判断的形状,并说明理由.

2)求BE的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知一次函数的图象与反比例函数的图象交于两点,点的坐标为

1)求一次函数的解析式

2)已知双曲线在第一象限上有一点到轴的距离为3,求的面积

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线轴于两点,与轴交于点.连接.

1)求抛物线的解析式和点的坐标;

2若点为第四象限内抛物线上一动点,点的横坐标为的面积为,求关于的函数关系式,并求出的最大值;

3)抛物线的对称轴上是否存在点,使为等腰三角形?若存在,请直接写出所有点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某风景区内有一古塔AB,在塔的北面有一建筑物,当光线与水平面的夹角是30°时,塔在建筑物的墙上留下了高3米的影子CD;而当光线与地面的夹角是45°时,塔尖A在地面上的影子E与墙角C15米的距离(BEC在一条直线上),求塔AB的高度(结果保留根号).

查看答案和解析>>

同步练习册答案