【题目】如图抛物线(),下列结论错误的是( )
A.a、b同号B.
C.和时,y值相同D.当时,
【答案】A
【解析】
利用抛物线开口方向得到a>0,利用抛物线的对称轴得到b=-4a<0,则可对AB进行判断;利用抛物线的对称性可对C进行判断;利用抛物线的对称性确定抛物线与x轴的一个交点坐标为(5,0),再根据二次函数的图象可对D进行判断.
解:∵抛物线开口向上,
∴a>0,
∵抛物线的对称轴为直线x=-=2,
∴b=-4a<0,所以A错误,
∴b+4a=0,所以B正确;
∵抛物线的对称轴为直线x=2,
∴当x=1和x=3时,函数值相等,所以C正确;
∵抛物线与x轴的一个交点坐标为(-1,0),
而抛物线的对称轴为直线x=2,
∴抛物线与x轴的一个交点坐标为(5,0),
∴当-1<x<5时,y<0,所以D正确.
故选A.
科目:初中数学 来源: 题型:
【题目】如图显示了用计算机模拟随机投掷一枚图钉的某次实验的结果.
下面有三个推断:
①当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0.616;
②随着实验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;
③若再次用计算机模拟实验,则当投掷次数为1000时,“钉尖向上”的概率一定是0.620.
其中合理的是( )
A. ① B. ② C. ①② D. ①③
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场购进一批单价为16元的日用品.若按每件23元的价格销售,每月能卖出270件;若按每件28元的价格销售,每月能卖出120件;若规定售价不得低于23元,假定每月销售件数y(件)与价格x(元/件)之间满足一次函数.
(1)试求y与x之间的函数关系式.
(2)在商品不积压且不考虑其他因素的条件下,销售价格定为多少时,才能使每月的毛利润w最大?每月的最大毛利润为多少?
(3)若要使某月的毛利润为1800元,售价应定为多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,点O在AC上,以OA为半径的⊙O交AB于点D,BD的垂直平分线交BC于点E,交BD于点F,连接DE.
(1)判断直线DE与⊙O的位置关系,并说明理由;
(2)若∠B=30°,AC=6,OA=2,直接写出阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知一次函数的图象与反比例函数的图象交于两点,点的坐标为
(1)求一次函数的解析式
(2)已知双曲线在第一象限上有一点到到轴的距离为3,求的面积
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线交轴于,两点,与轴交于点.连接.
(1)求抛物线的解析式和点的坐标;
(2)“若点为第四象限内抛物线上一动点,点的横坐标为,的面积为,求关于的函数关系式,并求出的最大值;
(3)抛物线的对称轴上是否存在点,使为等腰三角形?若存在,请直接写出所有点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某风景区内有一古塔AB,在塔的北面有一建筑物,当光线与水平面的夹角是30°时,塔在建筑物的墙上留下了高3米的影子CD;而当光线与地面的夹角是45°时,塔尖A在地面上的影子E与墙角C有15米的距离(B、E、C在一条直线上),求塔AB的高度(结果保留根号).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com