已知, BC∥OA,∠B=∠A=100°,试回答下列问题:
如图1所示,求证:OB∥AC.
(2)如图2,若点E、F在线段BC上,且满足∠FOC=∠AOC ,并且OE平分∠BOF.则∠EOC的度数等于__ _____;(在横线上填上答案即可).
(3)在(2) 的条件下,若平行移动AC,如图3,那么∠OCB:∠OFB的值是否随之发生变化?若变化,试说明理由;若不变,求出这个比值.
(4)在(3)的条件下,如果平行移动AC的过程中,若使∠OEB=∠OCA,此时∠OCA度数等于 .(在横线上填上答案即可).
(1)证明见试题解析;(2)400;(3)不变,;(4)600.
解析试题分析:(1)根据等式性质及平行线的判定可以得到证明思路.(2)根据角平分线及观察图形知道
∠EOC=∠BOC=400.(3)∠OFB与∠OCB实际上是三角形的外角与不相邻的内角的关系,再观察图形可知两直线平行内错角相等,角平分线分得的两个角相等,等量代换可得结论.(4)由∠OEB=∠OCA可以推出∠BOE=∠BCO=∠EOF=∠COF∠COA=200,从而∠OCA=600.
试题解析:
(1)∵∴
又∵∴
∴
(2)40°
(3)∵
∴
又∵
∴
又∵∴
∴
即
(4)60°
考点:1平行线的判定性质;2三角形的内外角关系;3角平分线性质;4等式性质.
科目:初中数学 来源: 题型:解答题
已知如图,射线CB∥OA,∠C=∠OAB=100°,E、F在CB上,且满足∠FOB=∠AOB,OE平分∠COF。
(1)求∠EOB的度数;
(2)若平行移动AB,那么∠OBC∶∠OFC的值是否随之变化?若变化,找出变化规律;若不变,求出这个比值;
(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=∠OBA?若存在,求出其度数;若不存在,说明理由。
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,∠AOB为直角,∠AOC为锐角,且OM平分∠BOC,ON平分∠AOC.
(1)如果∠AOC=50°,求∠MON的度数.
(2)如果∠AOC为任意一个锐角,你能求出∠MON的度数吗?若能,请求出来,若不能,说明为什么?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com