精英家教网 > 初中数学 > 题目详情

【题目】如图,△ABC内接于⊙O,AB=8,AC=4,DAB边上一点,P是优弧的中点,连接PA,PB,PC,PD,当BD的长度为多少时,△PAD是以AD为底边的等腰三角形?并加以证明.

【答案】当BD=4时,PAD是以AD为底边的等腰三角形.理由见解析.

【解析】

解:当BD=4时,△PAD是以AD为底边的等腰三角形。理由如下:

∵P是优弧的中点,∴PB=PC

△PAD是以AD为底边的等腰三角形,则PA=PD

∵∠PAD=∠PCB∴△PAD∽△PCB∴∠DPA=∠BPC∴∠BPD=∠CPA

△PBD△PCA中,∵PB=PC∠BPD=∠CPAPD="PA" ∴△PBD≌△PCASAS)。

∴BD=AC=4

由于以上结论,反之也成立,

BD=4时,△PAD是以AD为底边的等腰三角形。

根据等弧对等弦以及全等和相似三角形的判定与性质进行求解。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,设点A(0,4)、B(3,8).若点P(x,0),使得∠APB最大,则x=(  )

A. 3 B. 0 C. 4 D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC,AB=AC,AEBC边上的高线,BM平分∠ABCAE于点M,经过B,M 两点的⊙OBC于点G,交AB于点F ,FB⊙O的直径.

(1)求证:AM⊙O的切线

(2)当BE=3,cosC=时,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某乡镇要在生活垃圾存放区建一个老年活动中心,这样必须把1200立方米的生活垃圾运走:

1)假如每天能运x立方米,所需时间为y天,写出yx之间的函数表达式;

2)若每辆拖拉机一天能运12立方米,则5辆这样的拖拉机要用多少天才能运完?

3)在(2)的情况下,运了8天后,剩下的任务要在不超过6天的时间内完成,那么至少需要增加多少辆这样的拖拉机才能按时完成任务?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB⊙O的直径,CAB延长线上一点,CD⊙O相切于点EAD⊥CD于点D

1)求证:AE平分∠DAC

2)若AB=4∠ABE=60°

AD的长;

求出图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=5,AC=3,BC=4,将△ABCA逆时针方向旋转40°得到△ADE,点B经过的路径为弧BD,是图中阴影部分的面积为(  )

A. π﹣6 B. π C. π﹣3 D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】RtABC中,∠ABC=90°,AB=3,BC=4,过点B的直线把△ABC分割成两个三角形,使其中只有一个是等腰三角形,则这个等腰三角形的面积是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC与△CDE都是等边三角形,ADBE相交于点GBEAC相交于点FADCE相交于点H,则下列结论:①△ACD≌△BCE;②∠AFB=60°;③BF=AH;④△ECF≌△DCG;⑤连CG,则∠BGC=DGC.其中正确的个数是()

A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,小明家窗外有一堵围墙AB,由于围墙的遮挡,清晨太阳光恰好从窗户的最高点C射进房间的地板F处,中午太阳光恰好能从窗户的最低点D射进房间的地板E处,小明测得窗子距地面的高度OD0.8 m,窗高CD1.2 m,并测得OE0.8 mOF3 m,求围墙AB的高度.

查看答案和解析>>

同步练习册答案