精英家教网 > 初中数学 > 题目详情

【题目】如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点).
(1)将△ABC绕点B顺时针旋转90°得到△A′BC′,请画出△A′BC′.
(2)求BA边旋转到BA′位置时所扫过图形的面积.

【答案】
(1)解:如图所示:△A′BC′即为所求,


(2)解:∵AB= =

∴BA边旋转到BA″位置时所扫过图形的面积为: =


【解析】此题考查的作旋转对称图形及扇形的面积的计算. 关键掌握旋转的三要素:旋转中心,旋转方向,旋转角度. 熟记扇形面积公式.
【考点精析】通过灵活运用扇形面积计算公式,掌握在圆上,由两条半径和一段弧围成的图形叫做扇形;扇形面积S=π(R2-r2)即可以解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,直线AC∥DFCE分别在ABDF上,小华想知道∠ACE∠DEC是否互补,但是他有没有带量角器,只带了一副三角板,于是他想了这样一个办法:首先连结CF,再找出CF的中点O,然后连结EO并延长EO和直线AB相交于点B,经过测量,他发现EOBO,因此他得出结论:∠ACE∠DEC互补,而且他还发现BCEF

以下是他的想法,请你填上根据.小华是这样想的:

因为CFBE相交于点O

根据 得出∠COB∠EOF

OCF的中点,那么COFO,又已知 EOBO

根据 得出△COB≌△FOE

根据 得出BCEF

根据 得出∠BCO∠F

既然∠BCO∠F,根据 AB∥DF

既然AB∥DF,根据 得出∠ACE∠DEC互补.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:关于x的方程x2+2mx+m2﹣1=0
(1)不解方程,判别方程根的情况;
(2)若方程有一个根为3,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个安装有进出水管的30升容器,水管单位时间内进出的水量是一定的,设从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,得到水量y(升)与时间x(分)之间的函数关系如图所示.根据图象信思给出下列说法,其中错误的是(  )

A. 每分钟进水5

B. 每分钟放水1.25

C. 12分钟后只放水,不进水,还要8分钟可以把水放完

D. 若从一开始进出水管同时打开需要24分钟可以将容器灌满

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】杨华与季红用5张同样规格的硬纸片做拼图游戏,正面如图1所示,背面完全一样,将它们背面朝上搅匀后,同时抽出两张.规则如下:当两张硬纸片上的图形可拼成电灯或小人时,杨华得1分;当两张硬纸片上的图形可拼成房子或小山时,季红得1分(如图2).问题:游戏规则对双方公平吗?请说明理由;若你认为不公平,如何修改游戏规则才能使游戏对双方公平?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,点DAB上,点EBC上,BDBE

1)请你再添加一个条件,使得△BEA≌△BDC,并给出证明.你添加的条件是   

2)根据你添加的条件,再写出图中的一对全等三角形   .(只要求写出一对全等三角形,不再添加其他线段,不再标注或使用其他字母,不必写出证明过程)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线C1:y=x2+bx+c经过原点,与x轴的另一个交点为(2,0),将抛物线C1向右平移m(m>0)个单位得到抛物线C2 , C2交x轴于A,B两点(点A在点B的左边),交y轴于点C.
(1)求抛物线C1的解析式及顶点坐标;
(2)以AC为斜边向上作等腰直角三角形ACD,当点D落在抛物线C2的对称轴上时,求抛物线C2的解析式;
(3)若抛物线C2的对称轴存在点P,使△ PAC为等边三角形,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,对角线AC的长为半径作弧交数轴的正半轴于M,则点M的表示的数为________________

【答案】

【解析】ACAM∴AM

型】填空
束】
11

【题目】ABC中,AB10AC2BC边上的高AD6,则另一边BC等于_______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对于实数a,b,定义运算“*”:a*b=a2-ab(a≤b); a*b=b2-ab(a>b),关于x的方程(2x-1)*(x-1)=m 恰好有三个不相等的实数根,则m的取值范围是( )
A.m>
B.
C.
D.

查看答案和解析>>

同步练习册答案