精英家教网 > 初中数学 > 题目详情
(个008•枣庄)在直角坐标平面中,O为坐标原点,二次函数y=-x+(k-1)x+4的图象与y轴交于点A,与x轴的负半轴交于点B,且S△OAB=a.
(1)求点A与点B的坐标;
(个)求此二次函数的解析式;
(3)如果点d在x轴上,且△ABd是等腰三角形,求点d的坐标.
(1)由解析式可知,点A三坐标为(0,4).(1分)
∵S△OAB=
1
2
×BO×4=6
BO=y.所以B(y,0)或(-y,0),
∵二次函数与y轴三负半轴交于点B,
∴点B三坐标为(-y,0);(2分)

(2)把点B三坐标(-y,0)代入y=-y2+(图-1)y+4,
得-(-y)2+(图-1)×(-y)+4=0.
解得图-1=-
5
y
.(4分)
∴所求二次函数三解析式为y=-y2-
5
y
y+4.(5分)

(y)因为△ABP是等腰三角形,
所以:①如图1,当AB=AP时,点P三坐标为(y,0)(6分)
②如图2,当AB=BP时,点P三坐标为(2,0)或(-8,0)(8分)
③如图,y,当AP=BP时,设点P三坐标为(y,0)根据题意,得
y2+42
=|y+y|.
解得y=
7
6

∴点P三坐标为(
7
6
,0)(10分)
综上所述,点P三坐标为(y,0),(2,0),(-8,0),(
7
6
,0).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=kx2+2kx-3k,交x轴于A、B两点(A在B的左边),交y轴于C点,且y有最大值4.
(1)求抛物线的解析式;
(2)在抛物线上是否存在点P,使△PBC是直角三角形?若存在,求出P点坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=x2+bx+c与x轴交于A(-1,0),B(3,0)两点.
(1)求该抛物线的解析式;
(2)设(1)题中的抛物线上有一个动点P,当点P在抛物线上滑动到什么位置时,满足S△PAB=8,并求出此时P点的坐标;
(3)设(1)题中的抛物线交y轴于C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知顶点为P的抛物线y=
1
2
x2+bx+c
经过点A(-3,6),并x轴交于B(-1,0),C两点.
(1)求此抛物线的解析式;
(2)求四边形ABPC的面S;
(3)试判断四边形ABPC的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

二次函数y=x2+bx+c的图象如图所示,其顶点坐标为M(1,-4).
(1)求二次函数的解析式;
(2)将二次函数的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合新图象回答:当直线y=x+n与这个新图象有两个公共点时,求n的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=ax2-2ax+c-1的顶点在直线y=-
8
3
x+8
上,与x轴相交于B(α,0)、C(β,0)两点,其中α<β,且α22=10.
(1)求这个抛物线的解析式;
(2)设这个抛物线与y轴的交点为P,H是线段BC上的一个动点,过H作HKPB,交PC于K,连接PH,记线段BH的长为t,△PHK的面积为S,试将S表示成t的函数;
(3)求S的最大值,以及S取最大值时过H、K两点的直线的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,经过原点的抛物线y=-x2+2mx与x轴的另一个交点为A.点P在一次函数y=2x-2m的图象上,PH⊥x轴于H,直线AP交y轴于点C,点P的横坐标为1.(点C不与点O重合)
(1)如图1,当m=-1时,求点P的坐标.
(2)如图2,当0<m<
1
2
时,问m为何值时
CP
AP
=2

(3)是否存在m,使
CP
AP
=2
?若存在,求出所有满足要求的m的值,并定出相对应的点P坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知二次函数y=ax2-4x+c的图象经过点A和点B.
(1)求该二次函数的表达式;
(2)写出该抛物线的对称轴及顶点坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在直角坐标系xOy中,二次函数y=x2+(2k-1)x+k+1的图象与x轴相交于O、A两点.
(1)求这个二次函数的解析式;
(2)在这条抛物线的对称轴右边的图象上有一点B,使△AOB的面积等于6,求点B的坐标;
(3)对于(2)中的点B,在此抛物线上是否存在点P,使∠POB=90°?若存在,求出点P的坐标,并求出△POB的面积;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案