精英家教网 > 初中数学 > 题目详情
4.某公司共有A、B、C三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图
            各部门人数及每人所创年利润统计表
部门员工人数每人所创的年利润/万元
A510
Bb8
Cc5
(1)①在扇形图中,C部门所对应的圆心角的度数为108°
②在统计表中,b=9,c=6
(2)求这个公司平均每人所创年利润.

分析 (1)①根据扇形圆心角的度数=部分占总体的百分比×360°进行计算即可;②先求得A部门的员工人数所占的百分比,进而得到各部门的员工总人数,据此可得B,C部门的人数;
(2)根据总利润除以总人数,即可得到这个公司平均每人所创年利润.

解答 解:(1)①在扇形图中,C部门所对应的圆心角的度数为:360°×30%=108°;
②A部门的员工人数所占的百分比为:1-30%-45%=25%,
各部门的员工总人数为:5÷25%=20(人),
∴b=20×45%=9,c=20×30%=6,
故答案为:108°,9,6;
(2)这个公司平均每人所创年利润为:$\frac{5×10+9×8+6×5}{20}$=7.6(万元).

点评 本题主要考查了扇形统计图以及平均数的计算,解题时注意:通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系,用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

14.解不等式组$\left\{\begin{array}{l}{3x-4<2(x-1)}\\{\frac{x+2}{3}-1<\frac{x}{2}}\end{array}\right.$,并写出它的整数解.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.如图,六边形ABCDEF是正六边形,曲线FK1K2K3K4K5K6K7…叫做“正六边形的渐开线”,其中弧FK1,弧K1K2,弧K2K3,弧K3K4,弧K4K5,弧K5K6,…的圆心依次按点A,B,C,D,E,F循环,其弧长分别记为L1,L2,L3,L4,L5,L6,….当AB=1时,L2016等于(  )
A.$\frac{2016π}{2}$B.$\frac{2016π}{3}$C.$\frac{2016π}{4}$D.$\frac{2016π}{6}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.已知反比例函数y=$\frac{k}{x}$ 的图象过点A(3,1).
(1)求反比例函数的解析式;
(2)若一次函数y=ax+6(a≠0)的图象与反比例函数的图象只有一个交点,求一次函数的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.先化简,再求值:($\frac{{x}^{2}-4x+3}{x-3}$-$\frac{1}{3-x}$)($\frac{{x}^{2}-2x+1}{{x}^{2}-3x+2}$-$\frac{2}{x-2}$),其中x=4.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.为了绿化环境,育英中学八年级三班同学都积极参加植树活动,今年植树节时,该班同学植树情况的部分数据如图所示,请根据统计图信息,回答下列问题:

(1)八年级三班共有多少名同学?
(2)条形统计图中,m=10,n=7.
(3)扇形统计图中,试计算植树2棵的人数所对应的扇形圆心角的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.在黄冈长江大桥的东端一处空地上,有一块矩形的标语牌ABCD(如图所示),已知标语牌的高AB=5m,在地面的点E处,测得标语牌点A的仰角为30°,在地面的点F处,测得标语牌点A的仰角为75°,且点E,F,B,C在同一直线上,求点E与点F之间的距离.(计算结果精确到0.1米,参考数据:$\sqrt{2}$≈1.41,$\sqrt{3}$≈1.73)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.如图,已知AB是⊙O的弦,半径OC垂直AB,点D是⊙O上一点,且点D与点C位于弦AB两侧,连接AD、CD、OB,若∠BOC=70°,则∠ADC=35度.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.如图,四边形ABCD是菱形,AC=24,BD=10,DH⊥AB于点H,则线段BH的长为$\frac{50}{13}$.

查看答案和解析>>

同步练习册答案