精英家教网 > 初中数学 > 题目详情
如图1,已知正方形ABCD的边长为2
3
,点M是AD的中点,P是线段MD上的一动点(P不与M,D重合),以AB为直径作⊙O,过点P作⊙O的切线交BC于点F,切点为E.
(1)除正方形ABCD的四边和⊙O中的半径外,图中还有哪些相等的线段(不能添加字母和辅助线);
(2)求四边形CDPF的周长;
(3)延长CD,FP相交于点G,如图2所示.是否存在点P,使BF•FG=CF•OF?如果存在,试求此时AP的长;如果不存在,请说明理由.
精英家教网
分析:(1)根据切线长定理得到FB=FE,PE=PA;
(2)根据切线长定理,发现:该四边形的周长等于正方形的三边之和;
(3)根据若要满足结论,则∠BFO=∠GFC,根据切线长定理得∠BFO=∠EFO,从而得到这三个角应是60°,然后结合已知的正方形的边长,也是圆的直径,利用30°的直角三角形的知识进行计算.
解答:解:(1)FB=FE,PE=PA.

(2)四边形CDPF的周长为
FC+CD+DP+PE+EF=FC+CD+DP+PA+BF
=BF+FC+CD+DP+PA
=BC+CD+DA
=2
3
×3=6
3


(3)存在.
∵BF•FG=CF•OF
BF
OF
=
CF
FG

∵cos∠OFB=
BF
OF
,cos∠GFC=
CF
FG

∴∠OFB=∠GFC
∵∠OFB=∠OFE
∴∠OFE=∠OFB=∠GFC=60°
∴在Rt△OFB中,FE=FB=
OB
tan60°
=1
∴在Rt△GFC中
∵CG=CF•tan∠GFC=CF•tan60°=(2
3
-1)tan60°=6-
3

∴DG=CG-CD=6-3
3

∴DP=DG•tan∠PGD=DG•tan30°=2
3
-3
∴AP=AD-DP=2
3
-(2
3
-3)=3.
点评:此题综合运用了切割线定理直角三角形的性质进行求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

14、如图1,已知正方形ABCD的边CD在正方形DEFG的边DE上,连接AE,GC.

(1)试猜想AE与GC有怎样的位置关系,并证明你的结论;
(2)将正方形DEFG绕点D按顺时针方向旋转,使点E落在BC边上,如图2,连接AE和GC.你认为(1)中的结论是否还成立?若成立,给出证明;若不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

作图题
(1)如图1,已知?ABCD两边长分别是1和2,一个内角为60°,将?ABCD剪一刀成两部分,并拼成一个等腰三角形.要求在原图上画出剪切线和组成的等腰三角形,并填写等腰三角形的周长(本题不限作图工具)
图1,周长=
6
6
                      
图2,周长=
2+2
17
2+2
17

(2)如图2,已知正方形ABCD边长为2,将正方形剪两刀成三部分,并拼成一个等腰非直角三角形,要求在原图上画出剪切线和拼成的三角形,并填出等腰三角形的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•孝感)如图1,已知正方形ABCD的边长为1,点E在边BC上,若∠AEF=90°,且EF交正方形外角的平分线CF于点F.
(1)图1中若点E是边BC的中点,我们可以构造两个三角形全等来证明AE=EF,请叙述你的一个构造方案,并指出是哪两个三角形全等(不要求证明);
(2)如图2,若点E在线段BC上滑动(不与点B,C重合).
①AE=EF是否总成立?请给出证明;
②在如图2的直角坐标系中,当点E滑动到某处时,点F恰好落在抛物线y=-x2+x+1上,求此时点F的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)如图1,已知正方形ABCD与正方形DEFG,点A、D、E三点共线,则S△ADG
=
=
S△DCE(填“>”,“<”或“=”)
(2)如图2,将图1中正方形DEFG绕点D,逆时针转到如图的位置,则S△ADG
=
=
S△DCE(填“>”,“<”或“=”)
请说明理由.
(3)如图3,以△ABC三边向外作三个正方形,分别为正方形AEDC、正方形CFGB正方形ABHK,并且△ABC的边AC长为5,边AB长为4,则三角形AKE,三角形CDF,三角形BGH的面积和的最大值为
30
30

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,已知正方形OABC的边长为4,等腰直角三角板OEF的直角边OE、OF分别在OA、OC上,且OE=2.将三角板OEF绕点O逆时针旋转至OE1F1的位置,旋转角为α,连接CF1、AE1
(1)请在图2中画出三夹板OEF逆时针旋转90°时的图形,并直接判断此时△OAE1与△OCF1是否全等.
(2)当0°<α<90°时,∠OAE1与∠OCF1是否总有上述关系并加以证明;
(3)若三角板OEF绕O点逆时针旋转一周,是否存在某一位置,使得OE1∥CF1?若存在,请求出旋转角α的度数;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案