精英家教网 > 初中数学 > 题目详情
某商场以每件30元的价格购进一种商品,试销中发现,这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数:m=162-3x.
(1)写出商场卖这种商品每天的销售利润y(元)与每件的销售价x(元)之间的函数关系式;
(2)若商场要想每天获得最大销售利润,每件商品的售价定为什么最合适?最大销售利润是多少?
(1)由题意得,每件商品的销售利润为(x-30)元,那么m件的销售利润为y=m(x-30),
又∵m=162-3x,
∴y=(x-30)(162-3x),
即y=-3x2+252x-4860,
∵x-30≥0,
∴x≥30.
又∵m≥0,
∴162-3x≥0,即x≤54.
∴30≤x≤54.
∴所求关系式为y=-3x2+252x-4860(30≤x≤54).

(2)由(1)得y=-3x2+252x-4860=-3(x-42)2+432,
所以可得售价定为42元时获得的利润最大,最大销售利润是432元.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=ax2+bx+c与y轴的交点为C,顶点为M,直线CM的解析式y=-x+2并且线段CM的长为2
2

(1)求抛物线的解析式;
(2)设抛物线与x轴有两个交点A(x1,0)、B(x2,0),且点A在B的左侧,求线段AB的长;
(3)若以AB为直径作⊙N,请你判断直线CM与⊙N的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图:已知抛物线y1=-x2-2x+8的图象交x轴于点A,B两点,与y轴的正半轴交于点C.抛物线y2经过B、C两点且对称轴为直线x=3.
(1)确定A、B、C三点的坐标;
(2)求抛物线y2的解析式;
(3)若过点(0,3)且平行于x轴的直线与抛物线y2交于M、N两点,以MN为一边,抛物线y2上任意一点P(x,y)为顶点作平行四边形,若平行四边形的面积为S,写出S关于P点纵坐标y的函数解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图长为2的线段PQ在x的正半轴上,从P、Q作x轴的垂线与抛物线y=x2交于点P′、Q′.
(1)已知P的坐标为(k,0),求直线OP′的函数解析式;
(2)若直线OP′把梯形P′PQQ′的面积二等分,求k的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,抛物线y=x2-2x与直线y=3相交于点A、B,P是x轴上一点,若PA+PB最小,则点P的坐标为(  )
A.(-l,0)B.(0,0)C.(1,0)D.(3,0)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

二次函数y=x2+bx+c的图象如图所示.
(1)求此二次函数的解析式;
(2)求此二次函数图象与x轴的交点,当x满足什么条件时,函数值y<0;
(3)把此抛物线向上平移多少个单位时,抛物线与x轴只有一个交点?并写出平移后的抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,抛物线y=x2的顶点为P,A、B是抛物线上两点,ABx轴,四边形ABCD为矩形,CD边经过点P,AB=2AD.
(1)求矩形ABCD的面积;
(2)如图2,若将抛物线“y=x2”,改为抛物线“y=x2+bx+c”,其他条件不变,请猜想矩形ABCD的面积;
(3)若将抛物线“y=x2+bx+c”改为抛物线“y=ax2+bx+c”,其他条件不变,请猜想矩形ABCD的面积.(用a、b、c表示,并直接写出答案)
附加题:若将题中“y=x2”改为“y=ax2+bx+c”,“AB=2AD”条件不要,其他条件不变,探索矩形ABCD面积为常数时,矩形ABCD需要满足什么条件并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在△ABC中,∠A=90°,AB=4,AC=3,M是AB上的动点(不与A,B重合),过M点作MNBC交AC于点N.以MN为直径作⊙O,并在⊙O内作内接矩形AMPN.令AM=x.
(1)用含x的代数式表示△MNP的面积S;
(2)当x为何值时,⊙O与直线BC相切;
(3)在动点M的运动过程中,记△MNP与梯形BCNM重合的面积为y,试求y关于x的函数表达式,并求x为何值时,y的值最大,最大值是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=
3
3
x2+
2
3
3
x-
3
交x轴于A、B两点,交y轴于点C,顶点为D.
(1)求点A、B、C的坐标;
(2)把△ABC绕AB的中点M旋转180°,得到四边形AEBC,求E点的坐标;
(3)试判断四边形AEBC的形状,并说明理由.

查看答案和解析>>

同步练习册答案