精英家教网 > 初中数学 > 题目详情
精英家教网如图,等腰三角形ABC中,AC=AB=
41
,BC=10,以A为圆心,8为直径的圆与直线BC的位置关系为(  )
A、相离B、相切
C、相交D、相切或相离
分析:首先过A作AD⊥CB,然后利用勾股定理求出AD的长,再利用圆心与直线距离与半径关系,得出即可.
解答:解:过A作AD⊥CB,
精英家教网
∵A为圆心,圆的直径为8,
∴半径为4,
∵AC=AB,
∴BD=
1
2
BC=5,
AD2=AB2-BD2=41-25=16,
∴AD=4,
∴8为直径的圆与直线BC的位置关系为相切,
故选:B.
点评:此题主要考查了直线与圆的位置关系,勾股定理以及等腰三角形的性质,解决问题的关键是求出△ABC的高AD的长.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

9、如图,等腰三角形ABC中,AB=AC,∠A=44°,CD⊥AB于D,则∠DCB等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,等腰三角形ABC的顶角为120°,底边BC=
3
2
,则腰长AB为(  )
A、
2
2
B、
3
2
C、
1
2
D、
3

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,等腰三角形与正三角形的形状有着差异,我们把它与正三角形的接近程度称为等腰三角形的“正度”,在研究“正度”时,应符合下面四个条件:①“正度”的值是非负数;②“正度”值越小,表示等腰三角形越接近正三角形;③相似的等腰三角形“正度”要相等;④正三角形的“正度”是0.例如:
设等腰三角形的底和腰分别为a,b,底角和顶角分别为α,β.
可用|sinα-
3
2
|
表示等腰三角形的“正度”,|sinα-
3
2
|
的值越小,α越接近60°,表示等腰三角形越接近正三角形,且当两个等腰三角形相似时,它们的底角相等,显然,它们的“正度”|sinα-
3
2
|
也相等,当α=60°时,|sinα-
3
2
|=0

而如果用
a
b
表示等腰三角形的“正度”,就不符合要求,因为此时正三角形的正度是1!
解答下列问题:
甲同学认为:可用|a-b|表示等腰三角形的“正度”,|a-b|的值越小,表示等腰三角形越接近正三角形;
乙同学认为:可用|α-β|表示等腰三角形的“正度”,|α-β|的值越小,表示等腰三角形越接近正三角形.
精英家教网(1)他们的说法合理吗?为什么?
(2)对你认为不合理的方案加以改进,使其合理;
(3)请你再给出一种衡量等腰三角形“正度”的合理的表达式,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,等腰三角形ABC中,AB=AC,AH垂直BC,点E是AH上一点,延长AH至点F,使FH=EH,
(1)求证:四边形EBFC是菱形;
(2)如果∠BAC=∠ECF,求证:AC⊥CF.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,等腰三角形ABC(AB=AC)的底角为50°,绕点A逆时针旋转一定角度后得△AB′C′,那么△AB′C′绕点A旋转
40
40
度后AC⊥B′C′.

查看答案和解析>>

同步练习册答案