精英家教网 > 初中数学 > 题目详情
精英家教网如图,四边形ABCD是正方形,以CD为边作等边三角形CDE,BE与AC相交于点M,则∠AMD的度数是(  )
A、75°B、60°C、54°D、67.5°
分析:连接BD,根据BD,AC为正方形的两条对角线可知AC为BD的垂直平分线,所以∠AMD=AMB,要求∠AMD,求∠AMB即可.
解答:精英家教网解:如图,连接BD,
∵∠BCE=∠BCD+∠DCE=90°+60°=150°,BC=EC,
∴∠EBC=∠BEC=
1
2
(180°-∠BCE)=15°
∵∠BCM=
1
2
∠BCD=45°,
∴∠BMC=180°-(∠BCM+∠EBC)=120°,
∴∠AMB=180°-∠BMC=60°
∵AC是线段BD的垂直平分线,M在AC上,
∴∠AMD=∠AMB=60°
故选B.
点评:本题考查的正方形的对角垂直平分的性质,根据垂直平分线的性质可以求得∠AMD=∠AMB,确定AC和BD垂直平分是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,四边形ABCD的对角线AC与BD互相垂直平分于点O,设AC=2a,BD=2b,请推导这个四边形的性质.(至少3条)
(提示:平面图形的性质通常从它的边、内角、对角线、周长、面积等入手.)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD的对角线AC、BD交于点P,过点P作直线交AD于点E,交BC于点F.若PE=PF,且AP+AE=CP+CF.
(1)求证:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,四边形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD为正方形,E是BC的延长线上的一点,且AC=CE,求∠DAE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD是正方形,点E是BC的中点,∠AEF=90°,EF交正方形外角的平分线CF于F.

(I)求证:AE=EF;
(Ⅱ)若将条件中的“点E是BC的中点”改为“E是BC上任意一点”,其余条件不变,则结论AE=EF还成立吗?若成立,请证明;若不成立,请说明理由.

查看答案和解析>>

同步练习册答案