精英家教网 > 初中数学 > 题目详情
18.直线a,b,c,d的位置如图所示,如果∠1=∠2,∠3=43°,那么∠4等于(  )
A.130°B.137°C.140°D.143°

分析 先利用平行线的判定方法由∠1=∠2得到a∥b,则根据平行线的性质得∠5=∠3=43°,然后利用邻补角的定义求∠4.

解答 解:如图,
∵∠1=∠2,
∴a∥b,
∴∠5=∠3=43°,
∴∠4=180°-∠5=180°-43°=137°.
故选B.

点评 本题考查了平行线的判定与性质:性质由形到数,用于推导角的关系并计算;判定由数到形,用于判定两直线平行.性质与判定的已知和结论正好相反,都是角的关系与平行线相关.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

15.如图,已知⊙O是以AB为直径的△ABC的外接圆,OD∥BC,交⊙O于点D,交AC于点E,连接BD,BD交AC于点F,延长AC到点P,连接PB.
(1)若PF=PB,求证:PB是⊙O的切线;
(2)如果AB=10,BC=6,求CE的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.求下列图形中未知正方形的面积或未知边的长度:

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图1,已知线段AB与CD相交于点O(OA≠OC),AB=CD=6,∠AOC=60°,将AB平移得到线段CC′,连接DC′,BC′,此时,BC′=AC,如图2.
(1)求证:△DCC′是等边三角形.
(2)求证:AC+BD>6.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.如图,把图中的△ABC经过一定的变换得到△A′B′C′,如果图中△ABC上的点P的坐标为(a,b),那么它的对应点P′的坐标为(  )
A.(a-3,b)B.(a+3,b)C.(3-a,-b)D.(a-3,-b)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.把几个图形拼成一个新的图形,再通过图形面积的计算,常常可以得到一些有用的式子,或可以求出一些不规则图形的面积.

(1)如图1,是将几个面积不等的小正方形与小长方形拼成一个边长为a+b+c的正方形.
①若用不同的方法计算这个边长为a+b+c的正方形面积,就可以得到一个等式,这个等式可以为(a+b+c)2=a2+b2+c2+2ab+2bc+2ac.
③因式分解:a2+4b2+9c2+4ab+12bc+6ca.
(2)如图2,是将两个边长分别为a和b的正方形拼在一起,B,C,G三点在同一直线上,连接BD和BF,若两正方形的边长满足a+b=6,ab=8,请求出阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.根据如图所示程序计算函数值,若输入的x的值为$\frac{1}{2}$,则输出的函数值为(  )
A.-$\frac{1}{2}$B.$\frac{1}{4}$C.1D.$\frac{25}{4}$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.计算2$\sqrt{3}$×$\root{3}{1.5}$×$\root{6}{12}$的结果是2$\root{3}{9}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.试证:对任意的正整数n,有$\frac{1}{1×2×3}$+$\frac{1}{2×3×4}$+…+$\frac{1}{n(n+1)(n+2)}$<$\frac{1}{4}$.

查看答案和解析>>

同步练习册答案