精英家教网 > 初中数学 > 题目详情
如图,直线y=-
1
2
x+b
交x轴于点A,交直线y=
3
2
x
于点B(2,m).矩形CDEF的边DC在x轴上,D在C的左侧,EF在x轴的上方,DC=2,DE=4.当点C的坐标为(-2,精英家教网0)时,矩形CDEF开始以每秒2个单位的速度沿x轴向右运动,运动时间为t秒.
(1)求b、m的值;
(2)矩形CDEF运动t秒时,直接写出C、D两点的坐标;(用含t的代数式表示)
(3)当点B在矩形CDEF的一边上时,求t的值;
(4)设CF、DE分别交折线OBA于M、N两点,当四边形MCDN为直角梯形时,求t的取值范围.
分析:(1)把B点坐标分别代入y=
3
2
x和y=
1
2
x+b可求出m,b.
(2)C点向右移动2t个单位,则C点的横坐标要减2t,便可写出C,D两点坐标.
(3)首先判断B点在EF的下方,再讨论B点在DE或FC上,利用横坐标相等求t.
(4)通过端点确定范围,即C点到达A点,D点到达O点,还要去掉CM=DN时的t的值.
解答:解:(1)把B(2,m)代入y=
3
2
x
,得m=3.再把B(2,3)代入y=
1
2
x+ b
,得b=4.

(2)因为点C向右移了2t个单位,则点C的横坐标加2t,纵坐标还是0,
D点的横坐标比点C要小2,所以点C(2t-2,0)、D(2t-4,0);(4分)

(3)∵3<4,∴点B在EF的下方,不能在EF上
点B在CF边上时2t-2=2,解得t=2
点B在DE边上时,2t-4=2,解得t=3
所以当点B在矩形的一边上时,t的值为2秒或3秒;(6分)

(4)点D与O重合时,2t-4=0,解得t=2
点C与点A重合时,2t-2=8,解得t=5(8分)
CF交AB于M,DE交BO于N时,M(2t-2,5-t),N(2t-4,3t-6),
当CM=DN时,即5-t=3t-6
解得t=
11
4
,所以当t=
11
4
时四边形MCDN为矩形
所以当四边形MCDN为直角梯形时,t的取值范围为2<t<5且t≠
11
4
.(11分)
点评:考查了点在图象上则点的坐标满足图象的解析式;考查了平移下的点的坐标变换:左右平移只改变横坐标;考查了直角梯形的定义以及分类讨论思想的运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,直线EF过平行四边形ABCD对角线的交点O,分别交AB、CD于E、F,若平行四边形的面积是12,则△AOE与△DOF的面积和为(  )
A、4B、3C、2D、6

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,直线y=kx+b(k≠0)与坐标轴分别交于A、B两点,OA=8,OB=6.动点P从O精英家教网点出发,沿路线O→B→A以每秒1个单位长度的速度运动,到达A点时运动停止.
(1)直接写出A、B两点的坐标;
(2)求出直线AB的解析式;
(3)设点P的运动时间为t(秒),△OPA的面积为S,求S与t之间的函数关系式(不必写出自变量的取值范围);
(4)当S=12时,直接写出点P的坐标,此时,在坐标轴上是否存在点M,使以O、A、P、M为顶点的四边形是梯形?若存在,请直接写出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,直线y=-
1
2
 x
与双曲线y=
k
x
相交于A、B两点,点A坐标为(-2,1),则点B坐标为
(2,-1)
(2,-1)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,直线y=-
1
2
 x
与双曲线y=
k
x
相交于A(-2,1)、B两点,则点B坐标为(  )

查看答案和解析>>

科目:初中数学 来源:学习周报 数学 华师大七年级版 2009-2010学年 第16期 总第172期 华师大版 题型:022

如图,直线l1∥12,AB⊥CD,∠1=34°,则∠2=________.

查看答案和解析>>

同步练习册答案