精英家教网 > 初中数学 > 题目详情

某研究性学习小组在探究矩形的折纸问题时,将一块直角三角板的直角顶点绕矩形ABCD(AB<BC)的对角线的交点O旋转(①?②?③),图中的M、N分别为直角三角形的直角边与矩形ABCD的边CD、BC的交点.
(1)该学习小组成员意外的发现图①(三角板一直角边与OD重合)中,BN2=CD2+CN2,在图③中(三角板一边与OC重合),CN2=BN2+CD2,请你对这名成员在图①和图③中发现的结论选择其一说明理由.

(2)试探究图②中BN、CN、CM、DM这四条线段之间的数量关系,写出你的结论,并说明理由.
(3)将矩形ABCD改为边长为1的正方形ABCD,直角三角板的直角顶点绕O点旋转到图④,两直角边与AB、BC分别交于M、N,直接写出BN、CN、CM、DM这四条线段之间所满足的数量关系.(不需要证明)

解:(1)选择图①证明:连接DN.
∵四边形ABCD是矩形,
∴BO=DO,∠DCN=90°,
∵ON⊥BD,∴NB=ND,
∵∠DCN=90°,
∴ND2=NC2+CD2
∴BN2=NC2+CD2

(2)CM2+CN2=DM2+BN2.理由如下:
延长MO交AB于E,
∵四边形ABCD是矩形,
∴BO=DO,∠ABC=∠DCB=90°,
∵AB∥CD,∴∠ABO=∠CDO,∠BEO=∠DMO,
∴△BEO≌△DMO,
∴OE=OM,BE=DM,
∵NO⊥EM,
∴NE=NM,
∵∠ABC=∠DCB=90°,
∴NE2=BE2+BN2,NM2=CN2+CM2
∴CN2+CM2=BE2+BN2
即CN2+CM2=DM2+BN2

(3)CM2-CN2+DM2-BN2=2.
分析:(1)作辅助线,连接DN,在Rt△CDN中,根据勾股定理可得:ND2=NC2+CD2,再根据ON垂直平分BD,可得:BN=DN,从而可证:BN2=NC2+CD2
(2)作辅助线,延长MO交AB于点E,可证:△BEO≌△DMO,NE=NM,在Rt△BEN和Rt△MCN中,根据勾股定理和对应边相等,可证:CN2+CM2=DM2+BN2
(3)根据正方形的性质知:OA=OB,∠OAM=∠OBN,∠AOB=∠AOM+∠BOM=90°,∠MON为直角三角板的直角,可知:∠MON=∠BOM+∠BON=90°,可得:∠AOM=∠BON,从而可证:△AOM≌△BON,AM=BN,又AB=BC,可得:BM=CN,在Rt△ADM和△BCM中,根据勾股定理:DM2=AM2+AD2=BN2+AD2,MC2=MB2+BC2=CN2+BC2,故可得:CM2-CN2+DM2-BN2=2.
点评:本题考查了图形的旋转变化,在解题过程中要综合应用勾股定理、矩形、正方形的特殊性质及三角形全等的判定等知识.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

24、某研究性学习小组在探究矩形的折纸问题时,将一块直角三角板的直角顶点绕矩形ABCD(AB<BC)的对角线的交点O旋转(①?②?③),图中的M、N分别为直角三角形的直角边与矩形ABCD的边CD、BC的交点.
(1)该学习小组成员意外的发现图①(三角板一直角边与OD重合)中,BN2=CD2+CN2,在图③中(三角板一边与OC重合),CN2=BN2+CD2,请你对这名成员在图①和图③中发现的结论选择其一说明理由.

(2)试探究图②中BN、CN、CM、DN这四条线段之间的数量关系,写出你的结论,并说明理由.
(3)将矩形ABCD改为边长为1的正方形ABCD,直角三角板的直角顶点绕O点旋转到图④,两直角边与AB、BC分别交于M、N,直接写出BN、CN、CM、DM这四条线段之间所满足的数量关系.(不需要证明)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网某研究性学习小组在探究矩形的折纸问题时,将一块直角三角板的直角顶点绕着矩形ABCD的对角线交点O旋转(如图所示).已知AB=8,BC=10,图中M、N分别为直角三角板的直角边与矩形ABCD的边CD、BC的交点.问:是否存在某一旋转位置,使得CM+CN等于
445
?若存在,请求出此时DM的长;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

某研究性学习小组在探究矩形的折纸问题时,将一块直角三角板的直角顶点绕着矩形ABCD(AB<BC)的对角线交点O旋转(如图①→②→③),图中M、N分别为直角三角板的直角边与矩形ABCD的边CD、BC的交点.

(1)该学习小组中一名成员意外地发现:在图①(三角板的一直角边与OD重合)中,BN2=CD2+CN2;在图③(三角板的一直角边与OC重合)中,CN2=BN2+CD2.请你对这名成员在图①和图③中发现的结论选择其一说明理由.
(2)试探究图②中BN、CN、CM、DM这四条线段之间的关系,写出你的结论,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

某研究性学习小组在探究矩形的折纸问题时,将一块直角三角板的直角顶点绕着矩形ABCD(DC<BC)的对角线交点O旋转(如图①→②),图中M、N分别为直角三角板的直角边与三角形DBC的边CD、BC的交点.
(1)在图①(三角板的一直角边与OD重合)中,有CN2+DC2=BN2成立,请说明理由.
(2)试探究图②中BN、CN、CM、DM这四条线段之间的数量关系,请你用一个等式在横线上直接表示出探究的结论:
CN2+CM2=DM2+BN2
CN2+CM2=DM2+BN2
.证明你的结论.

查看答案和解析>>

科目:初中数学 来源:2011-2012学年山东威海市八年级下期末模拟数学试卷(三)(带解析) 题型:解答题

某研究性学习小组在探究矩形的折纸问题时,将一块直角三角板的直角顶点绕矩形ABCD(AB<BC)的对角线的交点O旋转(①→②→③),图中的M、N分别为直角三角形的直角边与矩形ABCD的边CD、BC的交点。
⑴该学习小组成员意外的发现图①(三角板一直角边与OD重合)中,BN2=CD2+CN2,在图③中(三角板一边与OC重合),CN2=BN2+CD2,请你对这名成员在图①和图③中发现的结论选择其一说明理由。

⑵试探究图②中BN、CN、CM、DN这四条线段之间的数量关系,写出你的结论,并说明理由。

⑶将矩形ABCD改为边长为1的正方形ABCD,直角三角板的直角顶点绕O点旋转到图④,两直角边与AB、BC分别交于M、N,直接写出BN、CN、CM、DM这四条线段之 间所满足的数量关系(不需要证明)

查看答案和解析>>

同步练习册答案