精英家教网 > 初中数学 > 题目详情
15.一个长方体木箱沿斜面下滑,当木箱滑至如图位置时,AB=3m,己知木箱高BE=$\sqrt{3}$m,斜面坡角为30°,则木箱端点E距地面AC的高度为3m.

分析 连接AE,在Rt△ABE中求出AE,根据∠EAB的正切值求出∠EAB的度数,继而得到∠EAF的度数,在Rt△EAF中,解出EF即可得出答案.

解答 解:连接AE,
在Rt△ABE中,AB=3m,BE=$\sqrt{3}$m,
则AE=$\sqrt{A{B}^{2}+B{E}^{2}}$=2$\sqrt{3}$m,
又∵tan∠EAB=$\frac{BE}{AB}$=$\frac{\sqrt{3}}{3}$,
∴∠EAB=30°,
在Rt△AEF中,∠EAF=∠EAB+∠BAC=60°,
∴EF=AE×sin∠EAF=2$\sqrt{3}$×$\frac{\sqrt{3}}{3}$=3m.
答:木箱端点E距地面AC的高度为3m.
故答案是:3.

点评 本题考查了坡度、坡角的知识,解答本题的关键是构造直角三角形,熟练运用三角函数求线段的长度.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

5.如图在矩形纸片ABCD中.
(1)在图(1)中将矩形纸片折叠,使点C与点A重合,用实线画出折叠后得到的图形(要求尺规作图,保留作图痕迹,不写作法)
(2)在(1)的条件下.若AB=8,AD=6,求折痕的长.
(3)在图(2)中将矩形ABCD沿对角线BD对折,用实线画出折叠后得到的图形(要求尺规作图,保留作图痕迹,不写作法)
(4)在(3)的条件下,若BC=10,AB=5.求AO的长.(O为对角线BD中点)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.在平面直角坐标系xOy中,有一宽为1的长方形纸带,平行于y轴,在x轴的正半轴上移动,交x轴的正半轴于点A,D,两边分别交函数y1=$\frac{2}{x}$(x>0)与y2=$\frac{3}{x}$(x>0)的图象于B、F和E、C(如图),设点A的横坐标为m.
(1)连接OB,OE,求△OBE的面积;
(2)连接BC,当m为何值时,四边形ABCD是矩形;
(3)在纸带在平移的过程中,能否使点O、B、C三点在同一直线上?若能,求出此时m的值;若不能,试说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,PA,PB分别与⊙O相切于点A,B,AC是⊙O的直径,若tan∠ACB=$\sqrt{5}$,求tan∠PCB的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.如图,已知抛物线y=ax2-2x-8(a>0)交y轴于点A,与x轴的正半轴交于点B,有一宽度为2的直尺平行于y轴,在点A、B之间平行移动,直尺的两长边所在的直线与抛物线分别交于P、Q两点,P、Q两点的纵坐标分别用yP和yQ表示,设点Q的横坐标为m(m≥0),若yP-yQ的最小值为2,则实数a的值为$\frac{3}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,BC是⊙O的直径,弦AE⊥BC,垂足为D点,$\widehat{AB}$=$\frac{1}{2}$$\widehat{BF}$,AE与BF相交于G点.
求证:(1)$\widehat{BE}$=$\widehat{EF}$;
(2)BG=GE.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,已知点E,C在线段BF上,BE=CF,∠B=∠DEF,∠ACB=∠F,求证:四边形ABED为平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.为保障北京2022 年冬季奥运会赛场间的交通服务,北京将建设连接北京城区-延庆区-崇礼县三地的高速铁路和高速公路.在高速公路方面,目前主要的交通方式是通过京藏高速公路(G6),其路程为220公里.为将崇礼县纳入北京一小时交通圈,有望新建一条高速公路,将北京城区到崇礼的道路长度缩短到100公里.如果行驶的平均速度每小时比原来快22公里,那么从新建高速行驶全程所需时间与从原高速行驶全程所需时间比为4:11.求从新建高速公路行驶全程需要多少小时?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,∠P的两边分别与⊙O交于点A、B、C、D,且其平分线恰好过圆心O.求证:PA=PC.

查看答案和解析>>

同步练习册答案