精英家教网 > 初中数学 > 题目详情
(2012•西宁)如图,已知菱形ABCD,AB=AC,E、F分别是BC、AD的中点,连接AE、CF.
(1)证明:四边形AECF是矩形;
(2)若AB=8,求菱形的面积.
分析:(1)根据菱形的四条边都相等可得AB=BC,然后判断出△ABC是等边三角形,然后根据等腰三角形三线合一的性质可得AE⊥BC,∠AEC=90°,再根据菱形的对边平行且相等以及中点的定义求出AF与EC平行且相等,从而判定出四边形AECF是平行四边形,再根据有一个角是直角的平行四边形是矩形即可得证;
(2)根据勾股定理求出AE的长度,然后利用菱形的面积等于底乘以高计算即可得解.
解答:(1)证明:∵四边形ABCD是菱形,
∴AB=BC,
又∵AB=AC,
∴△ABC是等边三角形,
∵E是BC的中点,
∴AE⊥BC(等腰三角形三线合一),
∴∠1=90°,
∵E、F分别是BC、AD的中点,
∴AF=
1
2
AD,EC=
1
2
BC,
∵四边形ABCD是菱形,
∴AD∥BC且AD=BC,
∴AF∥EC且AF=EC,
∴四边形AECF是平行四边形(一组对边平行且相等的四边形是平行四边形),
又∵∠1=90°,
∴四边形AECF是矩形(有一个角是直角的平行四边形是矩形);

(2)解:在Rt△ABE中,AE=
82-42
=4
3

所以,S菱形ABCD=8×4
3
=32
3
点评:本题考查了矩形的判定,菱形的性质,平行四边形的判定,勾股定理的应用,等边三角形的判定与性质,证明得到四边形AECF是平行四边形是解题的关键,也是突破口.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•西宁)如图,二次函数y=ax2+bx+c的图象过(-1,1)、(2,-1)两点,下列关于这个二次函数的叙述正确的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•西宁)如图,在菱形ABCD中,对角线AC、BD相交于点O,AC=12,BD=16,E为AD中点,点P在x轴上移动,小明同学写出了两个使△POE为等腰三角形的P点坐标(-5,0)和(5,0).请你写出其余所有符合这个条件的P点坐标
(8,0)或(
25
8
,0)
(8,0)或(
25
8
,0)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•西宁)如图所示的物体由两个紧靠在一起的圆柱组成,小刚准备画好它的三视图,那么他所画的三视图的俯视图应该是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•西宁)如图,将矩形沿图中虚线(其中x>y)剪成四块图形,用这四块图形恰能拼一个正方形,若y=2,则x的值等于(  )

查看答案和解析>>

同步练习册答案