精英家教网 > 初中数学 > 题目详情

美丽的东昌湖赋予江北水城以灵性,周边景点密布,如下图所示,A、B为湖滨的两个景点,C为湖北一个景点,景点B在景点C的正东,从景点A看,景点B在北偏东75°方向,景点C往北偏东30°方向。一游客自景点A驾船以每分钟20米的速度行驶了10分钟到达景点C,之后又以同样的速度驶向景点B,该游客从景点C到景点B需用多长时间(精确到1分钟)。(供选择数据:sin75°≈0.966,cos75°≈0.259,tan75°≈3.732,cot75°≈0.268,≈1.732)

t

解:根据题意,得AC=20×10=200,过点A作AD垂直于直线BC,垂足为D。

在Rt△ADC中,AD=AC×cos∠CAD=200×cos30°=100

DC=AC×sin∠CAD=200×sin30°=100.在Rt△ADB中,DB=AD×tan∠BAD=100×tan75°.

所以CB=DB―DC=100×tan75°一100.所以tan75°一5≈27.

即该游客自景点C驶向景点B约需27分钟。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

美丽的东昌湖赋予江北水城以灵性,周边景点密布.如图,A、B为湖滨的两个景点,C为湖心的一个景点,景点B在景点C的正东,从景点A看,景点B在北偏东75°方向,景点C在北偏东30°方向,一游客自景点A驾船以每分钟20米的速度行驶了10分钟到达景点C,之后又以同样的速度驶向景点B,该游客从景点C到景点B需用多长时间?(精确精英家教网到1分钟)

查看答案和解析>>

科目:初中数学 来源:第1章《直角三角形的边角关系》中考题集(28):1.4 船有触角的危险吗(解析版) 题型:解答题

美丽的东昌湖赋予江北水城以灵性,周边景点密布.如图,A、B为湖滨的两个景点,C为湖心的一个景点,景点B在景点C的正东,从景点A看,景点B在北偏东75°方向,景点C在北偏东30°方向,一游客自景点A驾船以每分钟20米的速度行驶了10分钟到达景点C,之后又以同样的速度驶向景点B,该游客从景点C到景点B需用多长时间?(精确到1分钟)

查看答案和解析>>

科目:初中数学 来源:第7章《锐角三角函数》中考题集(46):7.6 锐角三角函数的简单应用(解析版) 题型:解答题

美丽的东昌湖赋予江北水城以灵性,周边景点密布.如图,A、B为湖滨的两个景点,C为湖心的一个景点,景点B在景点C的正东,从景点A看,景点B在北偏东75°方向,景点C在北偏东30°方向,一游客自景点A驾船以每分钟20米的速度行驶了10分钟到达景点C,之后又以同样的速度驶向景点B,该游客从景点C到景点B需用多长时间?(精确到1分钟)

查看答案和解析>>

科目:初中数学 来源:第28章《锐角三角函数》中考题集(45):28.2 解直角三角形(解析版) 题型:解答题

美丽的东昌湖赋予江北水城以灵性,周边景点密布.如图,A、B为湖滨的两个景点,C为湖心的一个景点,景点B在景点C的正东,从景点A看,景点B在北偏东75°方向,景点C在北偏东30°方向,一游客自景点A驾船以每分钟20米的速度行驶了10分钟到达景点C,之后又以同样的速度驶向景点B,该游客从景点C到景点B需用多长时间?(精确到1分钟)

查看答案和解析>>

科目:初中数学 来源:第4章《锐角三角形》中考题集(39):4.3 解直角三角形及其应用(解析版) 题型:解答题

美丽的东昌湖赋予江北水城以灵性,周边景点密布.如图,A、B为湖滨的两个景点,C为湖心的一个景点,景点B在景点C的正东,从景点A看,景点B在北偏东75°方向,景点C在北偏东30°方向,一游客自景点A驾船以每分钟20米的速度行驶了10分钟到达景点C,之后又以同样的速度驶向景点B,该游客从景点C到景点B需用多长时间?(精确到1分钟)

查看答案和解析>>

同步练习册答案