精英家教网 > 初中数学 > 题目详情
20.已知x=-1是方程2x2+ax-5=0的一个根,则a的值是(  )
A.-3B.-4C.3D.7

分析 把x=-1代入方程计算即可求出a的值.

解答 解:把x=-1代入方程得:2-a-5=0,
解得:a=-3.
故选:A.

点评 此题考查了一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

15.如图所示的正方形网格中,每个小正方形的边长均为1个单位,△ABC的三个顶点都在格点上.
(1)在网格中画出△ABC向下平移3个单位得到的△A1B1C1
(2)在网格中画出△ABC关于直线m对称的△A2B2C2
(3)在直线m上画一点P,使得C1P+C2P的值最小.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.如图,平行四边形ABCD中,点E在边AD上,以BE为折痕,将△ABE折叠,使点A恰好落在CD上的点F,若△BCF的周长为14,CF的长为3,则△DEF的周长为(  )
A.8B.7C.6D.5

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.如图,△ABC中,CD⊥AB于D,下列条件中,能证明△ABC是直角三角形的有①②④.(在横线上填上你认为所有正确答案的序号)
①∠ACD=∠B 
②$\frac{CD}{AD}$=$\frac{BD}{CD}$ 
③$\frac{AC}{BC}$=$\frac{AD}{BD}$ 
④$\frac{AC}{AD}$=$\frac{AB}{AC}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.在△ABC中,∠C=90°,AC=4,AB=5,现将△ABC绕点B逆时针旋转90°,若点C旋转后的对应点是C′,则CC′的长为3$\sqrt{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.(1)【问题发现】如图1,在Rt△ABC中,AB=AC=4,∠BAC=90°,点D为AC的中点,过点A作BD的垂线,垂足为E,延长AE交BC于点F,求△ABF的面积.
小明发现,过点C作AC的垂线,交AF的延长线子点G,构造出全等三角形,经过推理和计算,能够得到BF与CF的数量关系,从而使问题得到解决,请直接填空:$\frac{BF}{CF}$=2,△ABF的面积为$\frac{16}{3}$.
 
(2)【类比探究】如图2,将(1)中的条件“点D为AC的中点”改为“点D为边AC上的一点,且满足CD=2AD”,其他条件不变,试求△ABF的面积,并写出推理过程.
(3)【拓展迁移】如图3,在△ABC中,AB=AC=4,∠BAC=120°,点D为AC上一点,且满足CD=2AD,E为BD上一点,∠AEB=60°,延长AE交BC于F,请直接写出△ABF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,四边形ABCD中,∠ADC=90°,AC=CB,E,F分别是AC,AB的中点,且∠DEA=∠ACB=45°,BG⊥AE于G,
(1)求证:四边形AFGD是菱形;
(2)若AC=BC=10,求菱形AFGD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.如图,在△ABC中,AD为△ABC的中线,BE为△ABD的中线,若S△ABC=80,BD=8,则点E到BC边的距离为5.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,∠ABC=90°,AB=6cm,AD=24cm,BC+CD=34cm,C是直线l上一动点,请你探索当C离B多远时,△ACD是一个以CD为斜边的直角三角形?

查看答案和解析>>

同步练习册答案