精英家教网 > 初中数学 > 题目详情
13、如图,在梯形ABCD中,AB∥CD,AD=BC,延长AB到E,使BE=DC,连接AC、CE,你能用几种方法说明AC与CE相等?请你写出一种推理过程.
分析:①直接证明△ACD≌△CEB,②连接BD,证明四边形CDBE为平行四边形,可得BD=CE,再根据梯形对角线相等,得BD=AC;③作DG⊥AE,CF⊥AE,垂足分别为G,F,证明AF=FE即可.
解答:解:有三种方法证明AC=CE.
方法①∵ABCD为等腰梯形,
∴∠ADC=∠DCB=∠CBE,
又∵AD=BC,CD=BE,
∴△ADC≌△CBE,
∴AC=CE;
方法②如图,连接BD,证明四边形CDBE为平行四边形,可得BD=CE,再根据梯形对角线相等,得BD=AC;
∴AC=CE;
方法③作DG⊥AE,CF⊥AE,垂足分别为G,F,证明AF=FE即可.
点评:本题考查了等腰梯形的性质.可以从等腰梯形的角,对角线,高的性质等方面考虑证题方法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

11、如图,在梯形ABCD中,AB∥CD,对角线AC、BD交于点O,则S△AOD
=
S△BOC.(填“>”、“=”或“<”)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,在梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=CD=10.
求:梯形ABCD的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在梯形ABCD中,AD∥BC,AB⊥AD,对角线BD⊥DC.
(1)求证:△ABD∽△DCB;
(2)若BD=7,AD=5,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

20、如图,在梯形ABCD中,AD∥BC,并且AB=8,AD=3,CD=6,并且∠B+∠C=90°,则梯形面积S梯形ABCD=
38.4

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在梯形ABCD中,AD∥BC,∠BCD=90°,以CD为直径的半圆O切AB于点E,这个梯形的面积为21cm2,周长为20cm,那么半圆O的半径为(  )
A、3cmB、7cmC、3cm或7cmD、2cm

查看答案和解析>>

同步练习册答案