A. | 当P为BC中点,△APD是等边三角形 | B. | 当△ADE∽△BPE时,P为BC中点 | ||
C. | 当AE=2BE时,AP⊥DE | D. | 当△APD是等边三角形时,BE+CD=DE |
分析 A、先判断出△APB≌△DPC,进而可以得出∠APD=60°,即可得出结论;
B、虽然题目中有相似三角形和直角三角形,但没有告诉线段与线段之间的倍数关系和没出现含30°的直角三角形,所以没办法得出点P是BC的中点;
C、先求出∠BAP,进而得出∠ADE=∠PDE,即可判断出△ADE≌△PDE,最后用三角形三线合一的性质即可得出结论;
D、先求出∠BPE=∠APE=∠PAB=30°,再用含30°的直角三角形的性质和勾股定理即可得出结论.
解答 解:A、∵四边形ABCD是矩形,
∴AB=CD,∠A=∠B,
∵点P是BC的中点,
∴PB=PC,
在△APB和△DPC中,$\left\{\begin{array}{l}{AB=DC}\\{∠ABP=∠DCP}\\{PB=PC}\end{array}\right.$,
∴△APB≌△DPC,
∴PA=PD,∠APB=∠DPC,
∵PD平分∠APC,
∴∠APD=∠CPD,
∴∠APB=∠APD=∠CPD,
∵∠APB+∠APD+∠CPD=180°,
∴∠APD=60°,
∵PA=PD,
∴△APD是等边三角形;
∴A正确,故A不符合题意;
C、∵PD⊥PE,
∴∠BPE+∠DPC=90°,∠APE+∠APD=90°,
∵∠APD=∠CPD,
∴∠APE=∠BPE,
∴$\frac{BP}{AP}=\frac{BE}{AE}$,
∵AE=2BE,
∴$\frac{BP}{AP}=\frac{1}{2}$,
在Rt△ABP中,sin∠BAP=$\frac{BP}{AP}=\frac{1}{2}$,
∴∠BAP=30°,
∴∠APB=60°,
∴∠BPE=∠APE=30°=∠BAP,
∴AE=PE,
∵EA⊥AD,EP⊥PD,
∴∠ADE=∠PDE,
在△ADE和△PDE中,$\left\{\begin{array}{l}{∠ADE=∠PDE}\\{∠DAE=∠DPE}\\{AE=PE}\end{array}\right.$,
∴△ADE≌△PDE,
∴∠AED=∠PED,
∵AE=PE,
∴DE⊥AP,
∴C正确,故C不符合题意;
D、∵△APD是等边三角形,
∴AP=DP,∠APD=60°,
∴∠CPD=60°,
∴∠APB=60°,
∴∠BPE=∠APE=∠PAB=30°
∴AE=PE
设BE=a,
在Rt△PBE中,BP=$\sqrt{3}$BE=$\sqrt{3}$a,PE=2a,
∴AE=2a,
∴CD=AB=BE+AE=3a,
易证△APB≌△DPC,
∴PB=PC,
∴AD=BC=2BP=2$\sqrt{3}$a,
在Rt△ADE中,根据勾股定理,得,DE=$\sqrt{A{E}^{2}+A{D}^{2}}$=4a,
∵BE+CD=a+3a=4a=DE,
∴D正确,故D不符合题意;
∴符合题意的只有B.
故选B.
点评 此题是四边形综合题,主要考查了矩形的性质,等边三角形的性质和判定,等腰三角形的性质,含30°的直角三角形的性质,全等三角形的判定和性质,解本题的关键:A、判断出△APB≌△DPC,C、求出∠BAP,D、求出∠BPE=∠APE=∠PAB=30°,是一道综合性比较强的题目.
科目:初中数学 来源: 题型:选择题
A. | 等腰三角形 | B. | 等边三角形 | C. | 直角三角形 | D. | 等腰直角三角形 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 一直增大 | B. | 一直减小 | C. | 先减小后增大 | D. | 先增大后减小 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com