精英家教网 > 初中数学 > 题目详情
如图,将△ABC绕顶点B按顺时针方向旋转60°,得到△DBE,连接AD,DC,已知∠DCB=30°.求证:DC2+BC2=AC2,即四边形ABCD是勾股四边形.
证明:连接EC,
∵将△ABC绕顶点B按顺时针方向旋转60°,得到△DBE,
∵△ABC≌△DBE,
∴AC=DE,BC=BE,
∵∠CBE=60°,
∴EC=BC,∠BCE=60°,
∵∠DCB=30°,
∴∠DCE=90°,
∴DC2+EC2=DE2
∴DC2+BC2=AC2
即四边形ABCD是勾股四边形.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

己知:正方形ABCD.
(1)如图1,点E、点F分别在边AB和AD上,且AE=AF.此时,线段BE、DF的数量关系和位置关系分别是什么?请直接写出结论.
(2)如图2,等腰直角三角形FAE绕直角顶点A顺时针旋转∠α,当0°<α<90°时,连接BE、DF,此时(1)中的结论是否成立,如果成立,请证明;如果不成立,请说明理由.
(3)如图3,等腰直角三角形FAE绕直角顶点A顺时针旋转∠α,当a=90°时,连接BE、DF,猜想沟AE与AD满足什么数量关系时,直线DF垂直平分BE.请直接写出结论.
(4)如图4,等腰直角三角形FAE绕直角顶点A顺时针旋转∠α,当90°<α<180°时,连接BD、DE、EF、FB得到四边形BDEF,则顺次连接四边形BDEF各边中点所组成的四边形是什么特殊四边形?请直接写出结论.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,E、F分别是正方形ABCD的边BC、CD上的点,BE=CF,连接AE、BF.将△ABE绕正方形的对角线交点O按顺时针方向旋转到△BCF,则旋转角是______°.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,若∠AOB=15°,则∠AOB′的度数是(  )
A.25°B.30°C.35°D.40°

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,把边长为2的等边△ABC绕着C点顺时针旋转至△DCE的位置,且点B、C、E在同一直线上,则△ABC旋转的角度是______;B、D间的距离为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

方格纸中的每个小方格都是边长为1个单位的正方形,△ABC的顶点均在格点上,在平面直角坐标系中的位置如图所示,点C的坐标为(0,-1).
(1)画出△ABC绕点O旋转180°后得到△A1B1C1,并写出A1、B1、C1三点坐标.
(2)若△ABC与△A2B2C2关于点(-2,-1)中心对称,则A2坐标为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在平面坐标系中,ABCO为正方形,已知点B的坐标为(4,4),点P的坐标为(3,3),当三角板直角顶点与P重合时,一条直角边与x轴交于点E,另一条直角边与y轴交于点F,在三角板绕点P旋转过程中,若△POE为等腰三角形,则点F的坐标为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,点O是正六边形ABCDEF的中心.
(1)找出这个轴对称图形的对称轴;
(2)这个正六边形绕点O旋转多少度后能和原来的图形重合?
(3)如果换成其他的正多边形呢?能得到一般的结论吗?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在3×3的正方形网格中,每个网格都有三个小正方形被涂黑.
(1)在图①中将一个空白部分的小正方形涂黑,使其余空白部分是轴对称图形但不是中心对称图形;
(2)在图②中将两个空白部分的小正方形涂黑,使其余空白部分是中心对称图形但不是轴对称图形.

查看答案和解析>>

同步练习册答案