精英家教网 > 初中数学 > 题目详情
如图,在?ABCD中,AB=6cm,AD=AC=5cm.点P由C出发沿CA方向匀速运动,速度为1cm/s;同时,线段EF由AB出发沿AD方向匀速运动,速度为1cm/s,交AC于Q,连接PE、PF.若设运动时间为t(s)(0<t<5).解答下列问题:精英家教网
(1)当t为何值时,PE∥CD?
(2)试判断三角形PEF形状,并请说明理由;
(3)当0<t<2.5时.
①在上述运动过程中,五边形ABFPE的面积是否为定值?如果是,求出五边形ABFPE的面积;如果不是,请说明理由;
②试求△PEQ的面积的取值范围.
分析:(1)首先用t表示出AE、CP、AP的长,若PE∥CD,那么△APE∽△ACD,根据相似三角形所得比例线段即可求得此时t的值.
(2)由于AD=AC,且QE∥CD,所以△AQE也是等腰三角形,即AQ=AE,由P、Q的速度可知:CP=AE=AQ,进而可求得CQ=AP,同理可证得△CFQ也是等腰三角形,即CF=CQ,由此得CF=AP,已求得AE=PC,而∠DAC=∠FCP,由此可证得△FCP≌△PAE,即可证得PF=PE,即△PEF是等腰三角形.
(3)①由(2)的全等三角形知:△AEP、△EPC的面积相等,因此五边形的面积可转化为△ABC的面积,所以五边形的面积是个定值;
②由(1)的相似三角形,易求得QE的表达式,分别过C、P作AB、EF的垂线CG、PH,交AB于G,交EF于H,根据等腰三角形三线合一的性质,易求得AG、BG的值,进而可求得∠ACG(即∠EPH)的余弦值,即可根据PQ的长表示出QE边上的高PH的值,由三角形的面积公式,可得关于△PQE的面积和t的函数关系式,根据函数的性质即可得到△PQE的最大面积,从而求得其面积的取值范围.
解答:(本题12分)
解:(1)由题意知AE=BF=CP=t,AP=5-t,
在?ABCD中,AD=BC=AC=5,AB=EF=CD=6,
当PE∥CD时,△APE∽△ACD,
t
5
=
5-t
5

∴t=2.5.

(2)是等腰三角形.
证明:在?ABCD中,AD=BC=AC=5,AB=EF=CD=6,∴∠CAB=∠CBA,
∵AB∥EF,∴∠CQF=∠CAB,∠CFQ=∠CBA,
∴∠CFQ=∠CQF,∴CF=CQ,
∴AQ=BF=AE,∴AP=CQ=CF,
∵AD∥BC,∴∠PAE=∠FCP,
∴△PAE≌△FCP(SAS),∴PE=PF.

(3)①是定值,为12.
理由:由(2)的全等三角形知:S△AEP=S△PCF,即S五边形BFPEA=S△ABC
过C作CG⊥AB于G,精英家教网
等腰△ACB中,AG=BG=3,AC=BC=5,则CG=4;
∴S五边形BFPEA=S△ABC=
1
2
×6×4=12.
②∵QE∥AB∥CD,
∴△AQE∽△ACD,
QE
CD
=
AE
AD
,即
QE
6
=
t
5
,QE=
6t
5

过P作PH⊥EF于H,
由①易得:cos∠APH=cos∠ACG=
4
5

故PH=
4
5
PQ=
4
5
(5-2t);
设△PEQ的面积为y,则y=
1
2
6
5
t•
4
5
(5-2t)=-
24
25
t2+
12
5
t=-
24
25
(t-
5
4
)2+
3
2

∴当t=
5
4
时,y最大=
3
2

0<S△PEQ
3
2
点评:此题主要考查了平行四边形的性质、相似三角形的判定和性质、全等三角形的性质、等腰三角形的性质以及二次函数最值的应用等知识,综合性强,难度较大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在?ABCD中,对角线AC、BD相交于点O,AB=
29
,AC=4,BD=10.
问:(1)AC与BD有什么位置关系?说明理由.
(2)四边形ABCD是菱形吗?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

18、如图,在?ABCD中,∠A的平分线交BC于点E,若AB=10cm,AD=14cm,则EC=
4
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•长春一模)感知:如图①,在菱形ABCD中,AB=BD,点E、F分别在边AB、AD上.若AE=DF,易知△ADE≌△DBF.
探究:如图②,在菱形ABCD中,AB=BD,点E、F分别在BA、AD的延长线上.若AE=DF,△ADE与△DBF是否全等?如果全等,请证明;如果不全等,请说明理由.
拓展:如图③,在?ABCD中,AD=BD,点O是AD边的垂直平分线与BD的交点,点E、F分别在OA、AD的延长线上.若AE=DF,∠ADB=50°,∠AFB=32°,求∠ADE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•犍为县模拟)甲题:已知关于x的一元二次方程x2=2(1-m)x-m2的两实数根为x1,x2
(1)求m的取值范围;
(2)设y=x1+x2,当y取得最小值时,求相应m的值,并求出最小值.
乙题:如图,在?ABCD中,BE⊥AD于点E,BF⊥CD于点F,AC与BE、BF分别交于点G,H.
(1)求证:△BAE∽△BCF.
(2)若BG=BH,求证:四边形ABCD是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在?ABCD中,∠ADB=90°,CA=10,DB=6,OE⊥AC于点O,连接CE,则△CBE的周长是
2
13
+4
2
13
+4

查看答案和解析>>

同步练习册答案