精英家教网 > 初中数学 > 题目详情
如图,已知:如图①,直线与x轴、y轴分别交于A、B两点,两动点D、E分别从A、B两点同时出发向O点运动(运动到O点停止);对称轴过点A且顶点为M的抛物线(a<0)始终经过点E,过E作EG∥OA交抛物线于点G,交AB于点F,连结DE、DF、AG、BG.设D、E的运动速度分别是1个单位长度/秒和个单位长度/秒,运动时间为t秒.

(1)用含t代数式分别表示BF、EF、AF的长;
(2)当t为何值时,四边形ADEF是菱形?判断此时△AFG与△AGB是否相似,并说明理由;
(3)当△ADF是直角三角形,且抛物线的顶点M恰好在BG上时,求抛物线的解析式.
解:(1)在直线解析式中,令x=0,得y=;令y=0,得x=1。
∴A(1,0),B(0,),OA=1,OB=
∴tan∠OAB=。∴∠OAB=60°。∴AB=2OA=2。
∵EG∥OA,∴∠EFB=∠OAB=60°。
,BF=2EF=2t。
∴AF=AB﹣BF=2﹣2t。
(2)①∵EF∥AD,且EF=AD=t,∴四边形ADEF为平行四边形。
ADEF是菱形,则DE=AD=t.
由DE=2OD,即:t=2(1﹣t),解得t=
∴t=时,四边形ADEF是菱形。
②此时△AFG与△AGB相似。理由如下:
如答图1所示,连接AE,

∵四边形ADEF是菱形,
∴∠DEF=∠DAF=60°。∴∠AEF=30°。
由抛物线的对称性可知,AG=AE。
∴∠AGF=∠AEF=30°。
在Rt△BEG中,BE=,EG=2,
。∴∠EBG=60°。
∴∠ABG=∠EBG﹣∠EBF=30°。
在△AFG与△AGB中,∵∠BAG=∠GAF,∠ABG=∠AGF=30°,
∴△AFG∽△AGB。
(3)当△ADF是直角三角形时,
①若∠ADF=90°,如答图2所示,

此时AF=2DA,即2﹣2t=2t,解得t=
∴BE=t=,OE=OB﹣BE=
∴E(0,),G(2,)。
设直线BG的解析式为y=kx+b,
将B(0,),G(2,)代入得:
,解得
∴直线BG的解析式为
令x=1,得,∴M(1,)。
设抛物线解析式为
∵点E(0,)在抛物线上,
,解得
∴抛物线解析式为,即
②若∠AFD=90°,如答图3所示,

此时AD=2AF,即:t=2(2﹣2t),解得:t=
∴BE=t=,OE=OB﹣BE=
∴E(0,),G(2,)。
设直线BG的解析式为y=k1x+b1
将B(0,),G(2,)代入得:
,解得
∴直线BG的解析式为
令x=1,得y=,∴M(1,)。
设抛物线解析式为
∵点E(0,)在抛物线上,
,解得
∴抛物线解析式为,即
综上所述,符合条件的抛物线的解析式为:

试题分析:(1)首先求出一次函数与坐标轴交点A、B的坐标,然后解直角三角形求出BF、EF、AF的长。
(2)由EF∥AD,且EF=AD=t,则四边形ADEF为平行四边形,若?ADEF是菱形,则DE=AD=t.由DE=2OE,列方程求出t的值;
如答图1所示,推出∠BAG=∠GAF,∠ABG=∠AGF=30°,证明△AFG与△AGB相似。
(3)当△ADF是直角三角形时,有两种情形,需要分类讨论:
①若∠ADF=90°,如答图2所示.首先求出此时t的值;其次求出点G的坐标,利用待定系数法求出直线BG的解析式,得到点M的坐标,最后利用顶点式和待定系数法求出抛物线的解析式。
②若∠AFD=90°,如答图3所示,解题思路与①相同。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,在下列五个结论中:
①2a﹣b<0;②abc<0;③a+b+c<0;④a﹣b+c>0;⑤4a+2b+c>0,
错误的个数有【   】
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线经过A(1,0),B(0,3)两点,对称轴是x=﹣1.

(1)求抛物线对应的函数关系式;
(2)动点Q从点O出发,以每秒1个单位长度的速度在线段OA上运动,同时动点M从M从O点出发以每秒3个单位长度的速度在线段OB上运动,过点Q作x轴的垂线交线段AB于点N,交抛物线于点P,设运动的时间为t秒.
①当t为何值时,四边形OMPQ为矩形;
②△AON能否为等腰三角形?若能,求出t的值;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y1=ax2+bx+c(a≠0)的顶点坐标是(1,4),它与直线y2=x+1的一个交点的横坐标为2.

(1)求抛物线的解析式;
(2)在给出的坐标系中画出抛物线y1=ax2+bx+c(a≠0)及直线y2=x+1的图象,并根据图象,直接写出使得y1≥y2的x的取值范围;
(3)设抛物线与x轴的右边交点为A,过点A作x轴的垂线,交直线y2=x+1于点B,点P在抛物线上,当SPAB≤6时,求点P的横坐标x的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(2013年四川资阳12分)如图,四边形ABCD是平行四边形,过点A、C、D作抛物线y=ax2+bx+c(a≠0),与x轴的另一交点为E,连结CE,点A、B、D的坐标分别为(﹣2,0)、(3,0)、(0,4).

(1)求抛物线的解析式;
(2)已知抛物线的对称轴l交x轴于点F,交线段CD于点K,点M、N分别是直线l和x轴上的动点,连结MN,当线段MN恰好被BC垂直平分时,求点N的坐标;
(3)在满足(2)的条件下,过点M作一条直线,使之将四边形AECD的面积分为3:4的两部分,求出该直线的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:y=y1+y2,y1与x2成正比例,y2与x成反比例,且x=1时,y=3;x=﹣1时,y=1.求x=﹣ 时,y的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知二次函数的图象如图所示,有下列5个结论:
①abc<0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b<m (am+b)(m≠1的实数)。
其中正确结论的序号有     

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

在反比例函数中,当x>0时,y随x的增大而增大,则二次函数y=m x2+m x的图象大致是下图中的
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

抛物线的最小值是     

查看答案和解析>>

同步练习册答案