分析 过O作OD⊥AB于D,OE⊥BC于E,OF⊥AC于F,根据角平分线性质求出OD=OE=OF,根据三角形面积公式求出即可.
解答 解:如图,过O作OD⊥AB于D,OE⊥BC于E,OF⊥AC于F,
∵O为△ABC三条角平分线的交点,
∴OD=OE=OF,
∵△ABC的三边AB,BC,CA的长分别为12,10,6,
∴S△ABO:S△BOC:S△AOC=
=($\frac{1}{2}$×AB×OD):($\frac{1}{2}$×BC×OE):($\frac{1}{2}$×AC×OF)
=AB:BC:AC
=12:10:6
=6:5:3.
故答案为:6:5:3.
点评 本题考查了三角形的面积,角平分线性质的应用,掌握角的平分线上的点到角的两边的距离相等是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com