【题目】如图,现有两条乡村公路AB、BC,AB长为1200米,BC长为1600,一个人骑摩托车从A处以20m/s的速度匀速沿公路AB、BC向C处行驶;另一人骑自行车从B处以5m/s的速度从B向C行驶,并且两人同时出发.
(1)求经过多少秒摩托车追上自行车?
(2)求两人均在行驶途中时,经过多少秒两人在行进路线上相距150米?
【答案】(1)80秒;(2)70秒或90秒
【解析】
(1)设经过x秒摩托车追上自行车,根据“摩托行驶路程=1200+骑自行车行驶路程”列出方程并解答;
(2)需要分两种情况解答:①摩托车还差150米追上自行车;②摩托车超过自行车150米,根据他们行驶路程间的数量关系列出方程并解答.
解:(1)设经过x秒摩托车追上自行车,
20x=5x+1200,
解得x=80.
答:经过80秒摩托车追上自行车.
(2)设经过y秒两人相距150米,
第一种情况:摩托车还差150米追上自行车时,
20y-1200=5y-150
解得y=70.
第二种情况:摩托车超过自行车150米时,
20y=150+5y+1200
解得y=90.
答:经过70秒或90秒两人在行进路线上相距150米.
科目:初中数学 来源: 题型:
【题目】根据给出的数轴及已知条件,解答下面的问题:
(1)已知点A,B,C表示的数分别为1,,-3.观察数轴,与点A的距离为3的点表示的数是 ,A,B两点之间的距离为 。
(2)数轴上,点B关于点A的对称点表示的数是 ;
(3)若将数轴折叠,使得A点与C点重合,则与B点重合的点表示的数是 ;若此数轴上M,N两点之间的距离为2019(M在N的左侧),且当A点与C点重合时,M点与N点也恰好重合,则点M表示的数是 ,点N表示的数是 。
(4)若数轴上P,Q两点间的距离为a(P在Q的左侧),表示数b的点到P,Q的两点的距离相等,将数轴折叠,当P点与Q点重合时,点P表示的数是 ,点Q表示的数是 (用含a,b的式子表示这两个数)。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题:如图(1),点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,试判断BE、EF、FD之间的数量关系.
(发现证明)小聪把△ABE绕点A逆时针旋转90°至△ADG,从而发现EF=BE+FD,请你利用图(1)证明上述结论.
(类比引申)如图(2),四边形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,点E、F分别在边BC、CD上,则当∠EAF与∠BAD满足 关系时,仍有EF=BE+FD.
(探究应用)如图(3),在某公园的同一水平面上,四条通道围成四边形ABCD.已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分别有景点E、F,∠EAF=75°且AE⊥AD,DF=40(﹣1)米,现要在E、F之间修一条笔直道路,求这条道路EF的长(结果取整数,参考数据:≈1.41,≈1.73)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在数轴上,点表示,点表示,点表示.动点从点出发,沿数轴正方向以每秒个单位的速度匀速运动;同时,动点从点出发,沿数轴负方向以每秒个单位的速度匀速运动.设运动时间为秒.
(1)当为何值时,、两点相遇?相遇点所对应的数是多少?
(2)在点出发后到达点之前,求为何值时,点到点的距离与点到点的距离相等;
(3)在点向右运动的过程中,是的中点,在点到达点之前,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们规定:将一个平面图形分成面积相等的两部分的直线叫做该平面图形的“等积线”,等积线被 这个平面图形截得的线段叫做该图形的“等积线段”(例如三角形的中线就是三角形的等积线段).已 知菱形的边长为 4,且有一个内角为 60°,设它的等积线段长为 m,则 m 的取值范围是( )
A. m=4 或 m=4 B. 4≤m≤4 C. 2 D. 2 ≤m≤4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点O为直线AB上一点,过点O作直线OC,已知∠AOC≠90°,射线OD平分∠AOC,射线OE平分∠BOC,射线OF平分∠DOE.
(1)求∠DOE和∠DOF的度数;
(2)若∠DOC=3∠COF,求∠AOC的度数;
(3)求∠BOF+∠DOC的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图7,已知平行四边形ABCD的周长是32cm,AB︰BC=5︰3,AE⊥BC,垂足为E,AF⊥CD,垂足为F,∠EAF=2∠C.
(1)求∠C的度数;
(2)已知DF的长是关于的方程--6=0的一个根,求该方程的另一个根.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在□ABCD,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.
(1)求证:四边形BFDE是矩形;
(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】反比例函数(a>0,a为常数)和在第一象限内的图象如图所示,点M在的图象上,MC丄x轴于点C,交的图象于点A,MD丄y轴于点D,交的图象于点B,当点M在的图象上运动时,以下结论:
①S△CDB=S△CCA
②四边形OAMB的面积为2-a
③当a=l时,点A是MC的中点
④若S四边形OAMB+S△CDB,则四边形OCMD为正方形.其中正确是________(把所有正确结论的序号写在横线上)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com