精英家教网 > 初中数学 > 题目详情
一座建于若干年前的水库大坝的横断面如图所示,其中背水面的整个坡面是长为90米、宽为5米的矩形.现需将其整修并进行美化,方案如下:①将背水坡AB的坡度由1:0.75改为1:;②用一组与背水坡面长边垂直的平行线将背水坡面分成9块相同的矩形区域,依次相间地种草与栽花.
(1)求整修后背水坡面的面积;
(2)如果栽花的成本是每平方米25元,种草的成本是每平方米20元,那么种植花草至少需要多少元?

【答案】分析:(1)本题可通过构建直角三角形来解,过A作AE⊥BC于E,直角三角形ABE中根据AB的坡度,设出AE、BE的长,然后根据勾股定理求出未知数的值,也就求出了AE、BE的长,直角三角形AB′E中,有坡度,有AE的长,就能求出AB′的长,有了AB′的长,坡的面积便可求出了;
(2)可通过不同种植方法的成本来得出最佳种植方案.
解答:解:(1)作AE⊥BC于E.
∵原来的坡度是1:0.75,∴=
设AE=4k,BE=3k,∴AB=5k,
又∵AB=5米,∴k=1,则AE=4米,
设整修后的斜坡为AB′,由整修后坡度为1:,有tan∠AB′E=
∴∠AB′E=30°,
∴AB′=2AE=8米,∴整修后背水坡面面积为90×8=720米2

(2)∵要依次相间地种植花草,则必然有一种是5块,有一种是4块,而栽花的成本是每平方米25元,种草的成本是每平方米20元,
∴两种方案中,选择种草5块、种花4块的方案花费较少.
∵整修后背水坡面面积为720米2
∴每一小块的面积是=80米2
∴需要花费20×5×80+25×4×80=16000元.
点评:两个直角三角形有公共的直角边,先求出公共边是解决此类题目的基本出发点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网一座建于若干年前的水库大坝的横断面如图所示,其中背水面的整个坡面是长为90米、宽为5米的矩形.现需将其整修并进行美化,方案如下:①将背水坡AB的坡度由1:0.75改为1:
3
;②用一组与背水坡面长边垂直的平行线将背水坡面分成9块相同的矩形区域,依次相间地种草与栽花.
(1)求整修后背水坡面的面积;
(2)如果栽花的成本是每平方米25元,种草的成本是每平方米20元,那么种植花草至少需要多少元?

查看答案和解析>>

科目:初中数学 来源:四川省中考真题 题型:解答题

一座建于若干年前的水库大坝的横断面如图所示,其中背水面的整个坡面是长为90米、宽为5米的矩形.现需将其整修并进行美化,方案如下:①将背水坡AB的坡度由1:0.75改为1:;②用一组与背水坡面长边垂直的平行线将背水坡面分成9块相同的矩形区域,依次相间地种草与栽花。

(1)求整修后背水坡面的面积;
(2)如果栽花的成本是每平方米25元,种草的成本是每平方米20元,那么种植花草至少需要多少元?

查看答案和解析>>

科目:初中数学 来源:第1章《解直角三角形》常考题集(16):1.3 解直角三角形(解析版) 题型:解答题

一座建于若干年前的水库大坝的横断面如图所示,其中背水面的整个坡面是长为90米、宽为5米的矩形.现需将其整修并进行美化,方案如下:①将背水坡AB的坡度由1:0.75改为1:;②用一组与背水坡面长边垂直的平行线将背水坡面分成9块相同的矩形区域,依次相间地种草与栽花.
(1)求整修后背水坡面的面积;
(2)如果栽花的成本是每平方米25元,种草的成本是每平方米20元,那么种植花草至少需要多少元?

查看答案和解析>>

科目:初中数学 来源:第28章《锐角三角函数》常考题集(16):28.2 解直角三角形(解析版) 题型:解答题

一座建于若干年前的水库大坝的横断面如图所示,其中背水面的整个坡面是长为90米、宽为5米的矩形.现需将其整修并进行美化,方案如下:①将背水坡AB的坡度由1:0.75改为1:;②用一组与背水坡面长边垂直的平行线将背水坡面分成9块相同的矩形区域,依次相间地种草与栽花.
(1)求整修后背水坡面的面积;
(2)如果栽花的成本是每平方米25元,种草的成本是每平方米20元,那么种植花草至少需要多少元?

查看答案和解析>>

科目:初中数学 来源:第25章《解直角三角形》常考题集(13):25.3 解直角三角形(解析版) 题型:解答题

一座建于若干年前的水库大坝的横断面如图所示,其中背水面的整个坡面是长为90米、宽为5米的矩形.现需将其整修并进行美化,方案如下:①将背水坡AB的坡度由1:0.75改为1:;②用一组与背水坡面长边垂直的平行线将背水坡面分成9块相同的矩形区域,依次相间地种草与栽花.
(1)求整修后背水坡面的面积;
(2)如果栽花的成本是每平方米25元,种草的成本是每平方米20元,那么种植花草至少需要多少元?

查看答案和解析>>

同步练习册答案
闂傚倷鑳舵灙濡ょ姴绻橀獮蹇涙晸閿燂拷 闂傚倸鍊搁崐鎼佸磻婵犲洤绠柨鐕傛嫹