【题目】已知四边形的对角线,,、、、分别是、、、的中点,则的值是_______.
【答案】118
【解析】
先根据、、、分别是、、、的中点得到四边形PQRS是平行四边形,再根据平行四边形的对角线的平方与四条边边长的平方的关系即可得到答案.
∵、、、分别是、、、的中点,
∴=(中位线的性质),
同理可得:=
并且有 PS∥BD,PS=BD(中位线的性质),
同理可得:QR∥BD,QR=,
∴PS∥QR,(等量替换),
∴四边形PQRS是平行四边形,
∴=+(平行四边形两条对角线的平方和等于四条边长的平方和,后附证明过程)
=
=27+32+27+32
=118.
附:四边形ABCD是平行四边形,则=+
证明: 如图,作垂直于E,作垂直于的延长线,交于点F.
∵四边形ABCD是平行四边形,
∴AB∥DC,AB=DC,AD=BC,
∴DE=CF(两平行线间的距离相等),
∴Rt△AED≌Rt△BFC(HL)
∴AE=BF,
根据勾股定理得:
,
,
,
=
=
∵(勾股定理)
∴=+(等量替换).
科目:初中数学 来源: 题型:
【题目】如图,在,,以为圆心,任意长为半径画弧,分别交,于点,,再分别以,,为圆心,大于长为半径画弧,两弧交于点,作弧线,交于点.已知,,则的长为( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点A,C分别在x轴,y轴上,四边形ABCO为矩形,AB=16,AC=20,点D与点A关于y轴对称,点E、F分别是线段AD、AC上的动点(点E不与点A、D重合),且∠CEF=∠ACB.
(1)直接写出BC的长是 ,点D的坐标是 ;
(2)证明:△AEF与△DCE相似;
(3)当△EFC为等腰三角形时,求点E的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】端午节三天假期的某一天,小明全家上午8时自驾小汽车从家里出发,到某著名旅游景点游玩.该小汽车离家的距离S(千米)与时间t(小时)的关系如图所示.
(1)在这个过程中,自变量是 ,因变量是 .
(2)景点离小明家多远?
(3)小明一家在景点游玩的时间是多少小时?
(4)小明到家的时间是几点?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,A(a,0),B(0,b),C(-a,0),且+b2-4b+4=0.
(1)求证:∠ABC=90°;
(2)∠ABO的平分线交x轴于点D,求D点的坐标.
(3)如图,在线段AB上有两动点M、N满足∠MON=45°,求证:BM2+AN2=MN2.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,一次函数y=kx+b(k,b都是常数,且k≠0)的图象经过点(1,0)和(0,2).
(1)当﹣2<x≤3时,求y的取值范围;
(2)已知点P(m,n)在该函数的图象上,且m﹣n=4,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,甲、乙两人在玩转盘游戏时,准备了两个可以自由转动的转盘A,B,每个转盘被分成面积相等的几个扇形,并在每一个扇形内标上数字.游戏规则:同时转动两个转盘,当转盘停止后,指针所指区域的数字之和为0时,甲获胜;数字之和为1时,乙获胜.如果指针恰好指在分割线上,那么重转一次,直到指针指向某一区域为止.
(1)用画树状图或列表法求乙获胜的概率;
(2)这个游戏规则对甲、乙双方公平吗?请判断并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形OABC的顶点A、C分别在的正半轴上,点B的坐标为(3,4)一次函数的图象与边OC、AB分别交于点D、E,并且满足OD= BE.点M是线段DE上的一个动点.
(1)求b的值;
(2)连结OM,若三角形ODM的面积与四边形OAEM的面积之比为1:3,求点M的坐标;
(3)设点N是轴上方平面内的一点,以O、D、M、N为顶点的四边形是菱形,求点N的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com