【题目】如图,在等边△ABC中,AC=9,点O在AC上,且AO=3,点P是AB上一动点,连结OP,将线段OP绕点O逆时针旋转60°得到线段OD,要使点D恰好落在BC上,则AP的长是( )
A.3B.5C.6D.8
科目:初中数学 来源: 题型:
【题目】如图,在等腰三角形PAD中,PA=PD,以AB为直径的⊙O经过点P,点C是⊙O上一点,连接AC,PC,PC交AB于点E,已知∠ACP=60°.
(1)求证:PD是⊙O的切线;
(2)连接OP,PB,BC,OC,若⊙O的直径是4,则:
①当DE= ,四边形APBC是矩形;
②当DE= ,四边形OPBC是菱形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC内接于⊙O,AB=AC,∠BAC=36°,过点A作AD∥BC,与∠ABC的平分线交于点D,BD与AC交于点E,与⊙O交于点F.
(1)求∠DAF的度数;
(2)求证:AE2=EFED;
(3)求证:AD是⊙O的切线.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有A、B、C1、C2四张同样规格的硬纸片,它们的背面完全一样,正面如图1所示.将它们背面朝上洗匀后,随机抽取并拼图.
(1)填空:随机抽出一张,正面图形正好是中心对称图形的概率是__________.
(2)随机抽出两张(不放回),其图形可拼成如图2的四种图案之一.请你用画树状图或列表的方法,分析拼成哪种图案的概率最大?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(10分)如图,在平面直角坐标系中,抛物线经过点A(0,4),B(1,0),C(5,0),其对称轴与x轴交于点M.
(1)求此抛物线的解析式和对称轴;
(2)在此抛物线的对称轴上是否存在一点P,使△PAB的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由;
(3)连接AC,在直线AC下方的抛物线上,是否存在一点N,使△NAC的面积最大?若存在,请求出点N的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在直角坐标系XOY中,二次函数图像的顶点坐标为,且与x轴的两个交点间的距离为6.
(1)求二次函数解析式;
(2)在x轴上方的抛物线上,是否存在点Q,使得以点Q、A、B为顶点的三角形与△ABC相似?如果存在,请求出Q点的坐标,如果不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数(,,为常数,且)中的与的部分对应值如下表:
以下结论:
①二次函数有最小值为;
②当时,随的增大而增大;
③二次函数的图象与轴只有一个交点;
④当时,.
其中正确的结论有( )个
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,P1是反比例函数(k>0)在第一象限图象上的一点,点A1的坐标为(2,0).若△P1OA1与△P2A1A2均为等边三角形,则A2点的坐标为_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com