精英家教网 > 初中数学 > 题目详情
如图,在平行四边形ABCD中,上两点,且
求证:(1)
(2)四边形是矩形.
证明见解析.

试题分析:(1)根据题中的已知条件我们不难得出:AB=CD,AF=DE,又因为BE=CF,那么两边都加上EF后,BF=CE,因此就构成了全等三角形的判定中边边边(SSS)的条件.
(2)由于四边形ABCD是平行四边形,只要证明其中一角为直角即可.
试题解析:(1)∵BE=CF,BF=BE+EF,CE=CF+EF,
∴BF=CE.
∵四边形ABCD是平行四边形,
∴AB=DC.
在△ABF和△DCE中,

∴△ABF≌△DCE(SSS).
(2)∵△ABF≌△DCE,
∴∠B=∠C.
∵四边形ABCD是平行四边形,
∴AB∥CD.
∴∠B+∠C=180°.
∴∠B=∠C=90°.
∴四边形ABCD是矩形.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,△ABC中,AD为∠BAC的平分线,AD的垂直平分线EF交BC的延长线于点F,连接AF.求证:∠B=∠CAF.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(1)如图1,点E、F分别是正方形ABCD的边BC、CD上的点,∠EAF=45°,连接EF,
则EF、BE、FD之间的数量关系是:EF=BE+FD.连结BD,交AE、AF于点M、N,且MN、BM、DN满足,请证明这个等量关系;
(2)在△ABC中, AB=AC,点D、E分别为BC边上的两点.
①如图2,当∠BAC=60°,∠DAE=30°时,BD、DE、EC应满足的等量关系是__________________;
②如图3,当∠BAC=,(0°<<90°),∠DAE=时,BD、DE、EC应满足的等量关系是____________________.【参考:

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

在等腰直角三角形ABC中,AB=AC=4,点O为BC的中点,以O为圆心作⊙O交BC于点M、N,⊙O与AB、AC相切,切点分别为D、E,则∠MND的度数为   °.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在△ABC中,AB=AC,点E,F分别在AB,AC上,AE=AF,BF与CE相交于点P,求证:PB=PC,并请直接写出图中其他相等的线段.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AC和BD相交于点O,OA=OC,OB=OD,求证:AB∥CD.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在△ABC中,AB=AC, ∠A=40º,AB的垂直平分线交AC于点E,垂足为点D,连接BE,则∠EBC的度数为          

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

在矩形ABCD中,由9个边长均为1的正方形组成的“L型”模板如图放置,此时量得CF=3,则BC边的长度为_____________.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处,当△CEB′为直角三角形时,BE的长为________.

查看答案和解析>>

同步练习册答案