分析 根据旋转的性质得出BC=BE,∠CBE=60°,得出等边三角形BEC,求出EC=BC,根据勾股定理求出BC即可.
解答 解:连接EC,即线段EC的长是点E与点C之间的距离,
在Rt△ACB中,由勾股定理得:BC=$\sqrt{A{B}^{2}-A{C}^{2}}$=$\sqrt{{3}^{2}-{2}^{2}}$=$\sqrt{5}$(cm),
∵将△ABC绕点B顺时针旋转60°得到△FBE,
∴BC=BE,∠CBE=60°,
∴△BEC是等边三角形,
∴EC=BE=BC=$\sqrt{5}$cm,
故答案为:$\sqrt{5}$.
点评 本题考查了旋转的性质,勾股定理,等边三角形的性质和判定等知识点,能求出△BEC是等边三角形是解此题的关键.
科目:初中数学 来源: 题型:选择题
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 2.6 | B. | 2.5 | C. | 2.4 | D. | 2.3 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com