如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(-1,0)、B(3,0),与y
轴交于点C(0,3).
(1)求抛物线的解析式及顶点D的坐标;
(2)若P为线段BD上的一个动点,过点P作PM⊥x轴于点M,求四边形PMAC的面积的最大值和此时点P的坐标;
(1)∵抛物线y=ax2+bx+c(a≠0)与x轴交于点A(-1,0)、B(3,0),
∴可设抛物线的解析式为y=a(x+1)(x-3)。
又∵抛物线y=ax2+bx+c(a≠0) 与y轴交于点C(0,3),
∴3=a(0+1)(0-3),解得a= -1。
∴抛物线的解析式为y=-(x+1)(x-3)。即----3分
∴抛物线顶点D的坐标为(1,4)。-----------2分
(2)设直线BD的解析式为y=kx+b,
由B(3,0),D(1,4)得,解得。
∴直线BD的解析式为y=-2x+6。
∵点P在直线PD上,∴设P(p,-2p+6)。
则OA=1,OC=3,OM= p,PM=-2p+6。
∵,∴当时,四边形PMAC的面积取得最大值为,----2分
此时点P的坐标为()。---------------2分
科目:初中数学 来源:2008年江西省南昌市初中毕业升学统一考试、数学试卷 题型:044
如图,抛物线y1=-ax2-ax+1经过点P,且与抛物线y2=ax2-ax-1,相交于A,B两点.
(1)求a值;
(2)设y1=-ax2-ax+1与x轴分别交于M,N两点(点M在点N的左边),y2=ax2-ax-1与x轴分别交于E,F两点(点E在点F的左边),观察M,N,E,F四点的坐标,写出一条正确的结论,并通过计算说明;
(3)设A,B两点的横坐标分别记为xA,xB,若在x轴上有一动点Q(x,0),且xA≤≤x≤xB,过Q作一条垂直于x轴的直线,与两条抛物线分别交于C,D两点,试问当x为何值时,线段CD有最大值?其最大值为多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
(本题满分8分)如图,抛物线y=ax-5x+4a与x轴相交于点A、B,且经过点C(5,4).该抛物线顶点为P.
1.⑴求a的值和该抛物线顶点P的坐标.
2.⑵求DPAB的面积;
3.⑶若将该抛物线先向左平移4个单位,再向上平移2个单位,求出平移后抛物线的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源:2012届江苏省兴化市九年级上学期期末四校联考数学卷 题型:解答题
(本题满分8分)如图,抛物线y=ax-5x+4a与x轴相交于点A、B,且经过点C(5,4).该抛物线顶点为P.
【小题1】⑴求a的值和该抛物线顶点P的坐标.
【小题2】⑵求DPAB的面积;
【小题3】⑶若将该抛物线先向左平移4个单位,再向上平移2个单位,求出平移后抛物线的解析式.
查看答案和解析>>
科目:初中数学 来源:2011-2012学年江苏省兴化市九年级上学期期末四校联考数学卷 题型:解答题
(本题满分8分)如图,抛物线y=ax-5x+4a与x轴相交于点A、B,且经过点C(5,4).该抛物线顶点为P.
1.⑴求a的值和该抛物线顶点P的坐标.
2.⑵求DPAB的面积;
3.⑶若将该抛物线先向左平移4个单位,再向上平移2个单位,求出平移后抛物线的解析式.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com