精英家教网 > 初中数学 > 题目详情
如图,在Rt△ABC中,∠ACB=90°,A、B在x轴上,A(-1,0),C(0,-2),B在x轴正半轴上,求经过A、B、C三点的抛物线,并求此抛物线的顶点坐标.
依题意,设B点坐标为(b,0)
则由直角三角形性质得,5+4+b2=(b+1)2
结合图象解得,b=4,
即B(4,0).
设该抛物线为y=a(x+1)(x-4),
将点B代入解得,a=
1
2

将抛物线化为顶点式得y=
1
2
(x-
3
2
2-
25
8

所以顶点为(
3
2
,-
25
8
).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,-3)三点,对称轴与抛物线相交于点D、与直线BC相交于点E,连接DE.
(1)求该抛物线的解析式;
(2)平面直角坐标系中是否存在一点R,使点R、D、B所成三角形和△DEB全等?若存在,求点R的坐标;若不存在,说明理由;
(3)在抛物线上是否存在一点P,使△PEB的面积是△BDE的面积的一半?若存在,直接写出点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某幢建筑物,从10米高的窗口A用水管和向外喷水,喷的水流呈抛物线,抛物线所在平面与墙面垂直(如图),如果抛物线的最高点M离墙1米,离地面
40
3
米,求水流下落点B离墙距离OB.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在矩形ABCD中,AB=4,BC=2,以A为坐标原点,AB所在的直线为x轴,建立直角坐标系.然后将矩形ABCD绕点A逆时针旋转,使点B落在y轴的E点上,则C和D点依次落在第二象限的F点上和x轴的G点上(如图).
(1)求经过B,E,G三点的二次函数解析式;
(2)设直线EF与(1)的二次函数图象相交于另一点H,试求四边形EGBH的周长.
(3)设P为(1)的二次函数图象上的一点,BPEG,求P点的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

科学研究表明,合理安排各学科的课外学习时间,可以有效的提高学习的效率.教育专家们通过对九年级学生的课外学习时间与学习收益情况进行进一步的研究发现,九年级学生每天课外用于非数学学科的学习时间t(小时)与学习收益量y1的函数关系是图①中的一条折线;每天用于数学学科的学习时间t(小时)与学习收益量y2的函数关系如图②所示:图象中OA是顶点为A的抛物线的一部分,AB是射线.

(1)求出y1与时间t(小时)之间的函数关系式,并注明自变量t的取值范围;
(2)求出y2与时间t(小时)之间的函数关系式,并注明自变量t的取值范围;
(3)如果九年级学生每天课外学习的时间为2小时,学习的总收益量为W(W=y1+y2),请问应如何安排学习时间才能使学习的总收益量最大?

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

某抛物线型拱桥的示意图如图,已知该抛物线的函数表达式为y=-
1
48
x2+12
,为保护该桥的安全,在该抛物线上的点E、F处要安装两盏警示灯(点E、F关于y轴对称),这两盏灯的水平距离EF是24米,则警示灯F距水面AB的高度是______米.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,正方形ABCD的边长是4,E是AB边上一点(E不与A、B重合),F是AD的延长线上一点,DF=2BE.四边形AEGF是句型,其面积y随BE的长x的变化而变化且构成函数.
(1)求y与x之间的函数关系式,并写出自变量x的取值范围;
(2)若上述(1)中是二次函数,请用配方法把它转化成y=a(x-h)2+k的形式,并指出当x取何值时,y取得最大(或最小)值,该值是多少?
(3)直接写出抛物线与x轴交点坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某公司生产的A种产品,每件成本是2元,每件售价是3元,一年的销售量是10万件.为了获得更多的利润,公司准备拿出一定资金来做广告.根据经验,每年投入的广告费为x(万元)时,产品的年销售量是原来的y倍,且y是x的二次函数,公司作了预测,知x与y之间的对应关系如下表:
x(万元)012
y11.51.8
(1)根据上表,求y关于x的函数关系式;
(2)如果把利润看成是销售总额减去成本和广告费,请你写出年利润S(万元)与广告费x(万元)的函数关系式;
(3)从上面的函数关系式中,你能得出什么结论?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图抛物线y=-
3
3
x2-
2
3
3
x+
3
,x轴于A、B两点,交y轴于点C,顶点为D.
(1)求A、B、C的坐标;
(2)把△ABC绕AB的中点M旋转180°,得到四边形AEBC:
①求E点坐标;
②试判断四边形AEBC的形状,并说明理由;
(3)试探索:在直线BC上是否存在一点P,使得△PAD的周长最小?若存在,请求出P点的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案