分析 连接AD,根据三角形的面积公式即可得到$\frac{1}{2}$AB•DE+$\frac{1}{2}$AC•DF=12,进而求得DE+DF的值.
解答 解:如图所示:连接AD,
∵AB=AC=13,BC=10,
∴△ABC底边BC上的高=$\sqrt{1{3}^{2}-{5}^{2}}$=12,
∴△ABC的面积=$\frac{1}{2}$×BC×12=60,
∴$\frac{1}{2}$AB•DE+$\frac{1}{2}$AC•DF=60,
∴DE+DF=$\frac{120}{13}$,
故答案为:$\frac{120}{13}$.
点评 本题考查了等腰三角形的性质以及勾股定理、三角形的面积公式运用,有利于培养同学们钻研和探索问题的精神.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com