精英家教网 > 初中数学 > 题目详情
10.指出下列命题的条件和结论.
(1)如果两个角相等,那么它们是对顶角;
(2)若a>b,b>c,则a>c;
(3)全等的两个三角形的面积相等.

分析 根据一个命题由题设和结论两部分组成,以如果开始的部分是条件,以那么开始的部分是结论,分别对(1)(2)(3)进行解答即可.

解答 解:(1)如果两个角相等,那么它们是对顶角”的条件是:两个角相等,结论是:它们是对顶角;
(2)若a>b,b>c,则a>c的条件是a>b,b>c,结论是a>c;
(3)全等的两个三角形的面积相等的条件是两个三角形全等,结论是它们的面积相等.

点评 本题主要考查了命题的组成,命题由题设和结论两部分组成.其中题设是已知的条件,结论是由题设推出的结果.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

20.($\frac{1}{2}$+$\frac{5}{6}$-$\frac{7}{12}$)÷(-$\frac{1}{36}$)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.如图,直角梯形ABCD中,AB∥DC,∠B=90°,AB=1,BC=2,CD=3,以B为圆心,半径为1的弧交BC于M,E是线段CD上一动点,EG⊥AD,垂足为G,F是弧AM上一动点,则EG+EF的最小值为$\frac{5\sqrt{2}-2}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.已知二次函数y=ax2+k的图象经过点(-1,2),(0,-4),求该函数的解析式.并指出在对称轴左侧部分,y随x的增大将发生怎样变化?这个函数有最大值还是最小值?这个值是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.在△ABC中,已知DE∥BC,S△DOE:S△COB=4:9,求AD:AB的值.

查看答案和解析>>

科目:初中数学 来源:2016-2017学年江苏省苏州太仓市第二学期初一期中模拟数学试卷(解析版) 题型:解答题

何老师安排喜欢探究问题的小明解决某个问题前,先让小明看了一个有解答过程的例题.

例:若m2+2mn+2n2﹣6n+9=0,求m和n的值.

【解析】
∵m2+2mn+2n2﹣6n+9=0

∴m2+2mn+n2+n2﹣6n+9=0

∴(m+n)2+(n﹣3)2=0

∴m+n=0,n﹣3=0∴m=﹣3,n=3

为什么要对2n2进行了拆项呢?

聪明的小明理解了例题解决问题的方法,很快解决了下面两个问题.相信你也能很好的解决下面的这两个问题,请写出你的解题过程..

解决问题:

(1)若x2﹣4xy+5y2+2y+1=0,求xy的值;

(2)已知a、b、c是△ABC的三边长,满足a2+b2=10a+12b﹣61,c是△ABC中最短边的边长,且c为整数,那么c可能是哪几个数?

查看答案和解析>>

科目:初中数学 来源:2016-2017学年江苏省苏州太仓市第二学期初一期中模拟数学试卷(解析版) 题型:解答题

计算:

(1)|-1|+(—2)3+(7-π)0-()-1;

(2) (-2a)3·(a2)2÷a3

(3) (3a+b-2)(3a-b+2)

(4)10002-1002×998

(5) (x+1)(x2+1)(x4+1)(x-1)

(6) (3a+2)2(3a-2)2

查看答案和解析>>

科目:初中数学 来源:2016-2017学年江苏省苏州太仓市第二学期初一期中模拟数学试卷(解析版) 题型:选择题

下列各式中与2mn﹣m2﹣n2相等的是( )

A.(m+n)2 B.﹣(m+n)2 C.(m﹣n)2 D.﹣(m﹣n)2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.我们规定:平面内点A到图形G上各个点的距离的最小值称为该点到这个图形的最小距离d,点A到图形G上各个点的距离的最大值称为该点到这个图形的最大距离D,定义点A到图形G的距离跨度为R=D-d.
(1)①如图1,在平面直角坐标系xOy中,图形G1为以O为圆心,2为半径的圆,直接写出以下各点到图形G1的距离跨度:
A(-1,0)的距离跨度;
B($\frac{1}{2}$,-$\frac{\sqrt{3}}{2}$)的距离跨度;
C(-3,2)的距离跨度;
②根据①中的结果,猜想到图形G1的距离跨度为2的所有的点组成的图形的形状是圆.
(2)如图2,在平面直角坐标系xOy中,图形G2为以C(1,0)为圆心,2为半径的圆,直线y=k(x+1)上存在到G2的距离跨度为2的点,求k的取值范围.
(3)如图3,在平面直角坐标系xOy中,射线OA:y=$\frac{\sqrt{3}}{3}$x(x≥0),圆C是以3为半径的圆,且圆心C在x轴上运动,若射线OA上存在点到圆C的距离跨度为2,直接写出圆心C的横坐标xc的取值范围.

查看答案和解析>>

同步练习册答案