【题目】如图,已知的周长等于 ,则它的内接正六边形ABCDEF的面积是( )
A. B. C. D.
【答案】C
【解析】
过点O作OH⊥AB于点H,连接OA,OB,由⊙O的周长等于6πcm,可得⊙O的半径,又由圆的内接多边形的性质可得∠AOB=60°,即可证明△AOB是等边三角形,根据等边三角形的性质可求出OH的长,根据S正六边形ABCDEF=6S△OAB即可得出答案.
过点O作OH⊥AB于点H,连接OA,OB,设⊙O的半径为r,
∵⊙O的周长等于6πcm,
∴2πr=6π,
解得:r=3,
∴⊙O的半径为3cm,即OA=3cm,
∵六边形ABCDEF是正六边形,
∴∠AOB=×360°=60°,OA=OB,
∴△OAB是等边三角形,
∴AB=OA=3cm,
∵OH⊥AB,
∴AH=AB,
∴AB=OA=3cm,
∴AH=cm,OH==cm,
∴S正六边形ABCDEF=6S△OAB=6××3×=(cm2).
故选C.
科目:初中数学 来源: 题型:
【题目】如图,,,三点在上,直径平分,过点作交弦于点,在的延长线上取一点,使得.
(1)求证:是的切线;
(2)连接AF交DE于点M,若AD=4,DE=5,求DM的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线l:与x轴交于点B1,以OB1为边长作等边△A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边△A2A1B2,过点A2作A2B3平行于x轴,交直线l于点B3,以A2B3为边长作等边△A3A2B3,…,则点A2 018的横坐标是_____________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2019年3月25日是第二十四个“全国中小学生安全教育日”,某校为加强学生的安全意识,以“防火、防溺水、防食物中毒、防校园欺凌”为主题组织了全校学生参加安全知识竞赛,从中抽取了部分学生成绩(得分为正整数,满分为100分)进行统计,绘制了两幅不完整的统计图,如图所示.
(1)学校共抽取了______名学生,_____,n=______.
(2)补全频数直方图;
(3)该校共有2000名学生。若成绩在70分以下(含70分)的学生安全意识不强,有待进一步加强安全教育,则该校安全意识不强的学生约有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知,,,点在直线上,把沿着直线翻折,点落在点处,联结,如果直线与直线所构成的夹角为60°,那么点的坐标是____________
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】刘老师在一节习题课上出示了下面一张幻灯片
解分式方程的基本思想是“____________”,把分式方程变为整式方程求解.解分式方程一定注意要__________.
小明同学的作业如下:
解:去分母得, (第一部)
移项,合并同类项得 (第二步)
经检验时, (第三步)
所以原分式方程的解为 (第四步)
解分式方程的基本思想是“____________”,把分式方程变为整式方程求解.解分式方程一定注意要__________.
小明同学的作业如下:
解:去分母得, (第一部)
移项,合并同类项得 (第二步)
经检验时, (第三步)
所以原分式方程的解为 (第四步)
(1)请将幻灯片中的划线部分填上(温馨提示有2个空呦!)
(2)小明解答过程是从第_______步开始出错的,其错误原因是______________;
(3)请你写出此题正确的解答过程.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,四边形是正方形,且,点与重合,以为圆心,作半径长为5的半圆,交于点,交于点,交的延长线于点.
发现是半圆上任意一点,连接,则的最大值为______;
思考如图2,将半圆绕点逆时针旋转,记旋转角为
(1)当时,求半圆落在正方形内部的弧长;
(2)在旋转过程中,若半圆与正方形的边相切时,请直接写出此时点到切点的距离.(注:,,)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=5,AD=3,动点P在直线AB上方,且满足S△PABS:矩形ABCD=1:3,则使△PAB为直角三角形的点P有( )个
A. 1B. 2C. 3D. 4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com